Papers
Topics
Authors
Recent
2000 character limit reached

CoSearchAgent: A Lightweight Collaborative Search Agent with Large Language Models

Published 9 Feb 2024 in cs.IR, cs.AI, and cs.CL | (2402.06360v1)

Abstract: Collaborative search supports multiple users working together to accomplish a specific search task. Research has found that designing lightweight collaborative search plugins within instant messaging platforms aligns better with users' collaborative habits. However, due to the complexity of multi-user interaction scenarios, it is challenging to implement a fully functioning lightweight collaborative search system. Therefore, previous studies on lightweight collaborative search had to rely on the Wizard of Oz paradigm. In recent years, LLMs have been demonstrated to interact naturally with users and achieve complex information-seeking tasks through LLM-based agents. Hence, to better support the research in collaborative search, in this demo, we propose CoSearchAgent, a lightweight collaborative search agent powered by LLMs. CoSearchAgent is designed as a Slack plugin that can support collaborative search during multi-party conversations on this platform. Equipped with the capacity to understand the queries and context in multi-user conversations and the ability to search the Web for relevant information via APIs, CoSearchAgent can respond to user queries with answers grounded on the relevant search results. It can also ask clarifying questions when the information needs are unclear. The proposed CoSearchAgent is highly flexible and would be useful for supporting further research on collaborative search. The code and demo video are accessible.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 81 likes about this paper.