Papers
Topics
Authors
Recent
2000 character limit reached

An explainable machine learning-based approach for analyzing customers' online data to identify the importance of product attributes

Published 3 Feb 2024 in cs.LG and cs.GT | (2402.05949v1)

Abstract: Online customer data provides valuable information for product design and marketing research, as it can reveal the preferences of customers. However, analyzing these data using AI for data-driven design is a challenging task due to potential concealed patterns. Moreover, in these research areas, most studies are only limited to finding customers' needs. In this study, we propose a game theory ML method that extracts comprehensive design implications for product development. The method first uses a genetic algorithm to select, rank, and combine product features that can maximize customer satisfaction based on online ratings. Then, we use SHAP (SHapley Additive exPlanations), a game theory method that assigns a value to each feature based on its contribution to the prediction, to provide a guideline for assessing the importance of each feature for the total satisfaction. We apply our method to a real-world dataset of laptops from Kaggle, and derive design implications based on the results. Our approach tackles a major challenge in the field of multi-criteria decision making and can help product designers and marketers, to understand customer preferences better with less data and effort. The proposed method outperforms benchmark methods in terms of relevant performance metrics.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.