Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Design Preferences through Design Feature Extraction and Weighted Ensemble (2405.07193v1)

Published 12 May 2024 in cs.HC

Abstract: Design is a factor that plays an important role in consumer purchase decisions. As the need for understanding and predicting various preferences for each customer increases along with the importance of mass customization, predicting individual design preferences has become a critical factor in product development. However, current methods for predicting design preferences have some limitations. Product design involves a vast amount of high-dimensional information, and personal design preference is a complex and heterogeneous area of emotion unique to each individual. To address these challenges, we propose an approach that utilizes dimensionality reduction model to transform design samples into low-dimensional feature vectors, enabling us to extract the key representational features of each design. For preference prediction models using feature vectors, by referring to the design preference tendencies of others, we can predict the individual-level design preferences more accurately. Our proposed framework overcomes the limitations of traditional methods to determine design preferences, allowing us to accurately identify design features and predict individual preferences for specific products. Through this framework, we can improve the effectiveness of product development and create personalized product recommendations that cater to the unique needs of each consumer.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Dongju Shin (6 papers)
  2. Sunghee Lee (7 papers)
  3. Namwoo Kang (33 papers)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets