Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Interpretable classifiers for tabular data via discretization and feature selection (2402.05680v3)

Published 8 Feb 2024 in cs.LG, cs.AI, and cs.LO

Abstract: We introduce a method for computing immediately human interpretable yet accurate classifiers from tabular data. The classifiers obtained are short Boolean formulas, computed via first discretizing the original data and then using feature selection coupled with a very fast algorithm for producing the best possible Boolean classifier for the setting. We demonstrate the approach via 12 experiments, obtaining results with accuracies comparable to ones obtained via random forests, XGBoost, and existing results for the same datasets in the literature. In most cases, the accuracy of our method is in fact similar to that of the reference methods, even though the main objective of our study is the immediate interpretability of our classifiers. We also prove a new result on the probability that the classifier we obtain from real-life data corresponds to the ideally best classifier with respect to the background distribution the data comes from.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets