Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Markovian Quantum Control via Model Maximum Likelihood Estimation and Reinforcement Learning (2402.05084v1)

Published 7 Feb 2024 in quant-ph

Abstract: Reinforcement Learning (RL) techniques have been increasingly applied in optimizing control systems. However, their application in quantum systems is hampered by the challenge of performing closed-loop control due to the difficulty in measuring these systems. This often leads to reliance on assumed models, introducing model bias, a problem that is exacerbated in open quantum dynamics where Markovian approximations are not valid. To address these challenges, we propose a novel approach that incorporates the non-Markovian nature of the environment into a low-dimensional effective reservoir. By initially employing a series of measurements as a 'dataset', we utilize machine learning techniques to learn the effective quantum dynamics more efficiently than traditional tomographic methods. Our methodology aims to demonstrates that by integrating reinforcement learning with model learning, it is possible to devise control policies and models that can counteract decoherence in a spin-boson system. This approach may not only mitigates the issues of model bias but also provides a more accurate representation of quantum dynamics, paving the way for more effective quantum control strategies.

Citations (1)

Summary

We haven't generated a summary for this paper yet.