Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Confinement enhanced viscosity vs shear thinning in lubricated ice friction (2402.04700v1)

Published 7 Feb 2024 in cond-mat.mes-hall and physics.chem-ph

Abstract: The ice surface is known for presenting a very small kinetic friction coefficient, but the origin of this property remains highly controversial to date. In this work, we revisit recent computer simulations of ice sliding on atomically smooth substrates, using newly calculated bulk viscosities for the TIP4P/Ice water model. The results show that spontaneously formed premelting films in static conditions exhibit an effective viscosity which is about twice the bulk viscosity. However, upon approaching sliding speeds in the order of m/s, the shear rate becomes very large, and the viscosities decrease by several orders of magnitude. This shows that premelting films can act as an efficient lubrication layer despite their small thickness, and illustrates an interesting interplay between confinement enhanced viscosities, and shear thinning. Our results suggest that the strongly thinned viscosities that operate under the high speed skating regime could largely reduce the amount of frictional heating.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. B. Weber, Y. Nagata, S. Ketzetzi, F. Tang, W. J. Smit, H. J. Bakker, E. H. G. Backus, M. Bonn, and D. Bonn, “Molecular insight into the slipperiness of ice,” J. Phys. Chem. Lett. 9, 2838–2842 (2018), pMID: 29741089.
  2. L. Canale, J. Comtet, A. Niguès, C. Cohen, C. Clanet, A. Siria, and L. Bocquet, “Nanorheology of interfacial water during ice gliding,” Phys. Rev. X 9, 041025 (2019).
  3. R. W. Liefferink, F.-C. Hsia, B. Weber, and D. Bonn, “Friction on ice: How temperature, pressure, and speed control the slipperiness of ice,” Phys. Rev. X 11, 011025 (2021).
  4. J. H. Lever, A. P. Lines, S. Taylor, G. R. Hoch, E. Asenath-Smith,  and D. S. Sodhi, “Revisiting mechanics of ice-skate friction: from experiments at a skating rink to a unified hypothesis,”  J. Glaciol.  68, 337–356 (2022).
  5. F. Du, P. Ke, and P. Hong, “How ploughing and frictional melting regulate ice-skating friction,” Friction 11, 2036–2058 (2023).
  6. B. N. J. Persson and E. C. Tyrode, “Ice breakloose friction,” J. Chem. Phys. 158, 234701 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0155545/18000643/234701_1_5.0155545.pdf .
  7. N. Miyashita, A. E. Yakini, W. Pyckhout-Hintzen, and B. N. J. Persson, “Sliding friction on ice,” J. Chem. Phys. 158, 174702 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0147524/18143553/174702_1_5.0147524.pdf .
  8. F. P. Bowden, “Friction on snow and ice,” Proc. R. Soc. Lond. A 217, 462–478 (1953), https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1953.0074 .
  9. P. Oksanen and J. Heikonen, “The mechanism of friction of ice,” Wear 78, 315–324 (1982).
  10. S. Colbeck, “The kinetic friction of snow,” J. Glaciol. 34, 78–86 (1988).
  11. E. Lozowski, K. Szilder, and S. A. Maw, “A model of ice friction for a speed skate blade,” Sports Eng. 16, 239–253 (2013).
  12. J. H. Lever and A. P. Lines, “Ice-rich slurries can account for the remarkably low friction of ice skates,” J. Glaciol. 69, 217–236 (2023).
  13. F. Du, “Analytical theory of ice-skating friction with flat contact,” Tribol. Lett. 71, 5 (2023).
  14. K. Tusima, “Adhesion theory for low friction on ice,” in New Tribological Ways, edited by T. Ghrib (IntechOpen, Rijeka, 2011) Chap. 15.
  15. D. Beaglehole and P. Wilson, “Extrinsic premelting at the ice-glass interface,” J. Chem. Phys. 98, 8096–8100 (1994), https://doi.org/10.1021/j100084a028 .
  16. H. Strausky, J. R. Krenn, A. Leitner, and F. Aussenegg, “Sliding plastics on ice: fluorescence spectroscopic studies on interfacial water layers in the μ𝜇\muitalic_μm thickness regime,” Appl. Phys. B 66, 599 (1998).
  17. J. F. D. Liljeblad, I. Furó, and E. C. Tyrode, ‘‘The premolten layer of ice next to a hydrophilic solid surface: correlating adhesion with molecular properties,” Phys. Chem. Chem. Phys 19, 305–317 (2017).
  18. I. d. A. Ribeiro and M. d. Koning, “Grain-boundary sliding in ice ih: Tribology and rheology at the nanoscale,” J. Phys. Chem. C 125, 627–634 (2021), https://doi.org/10.1021/acs.jpcc.0c10032 .
  19. J. L. F. Abascal, E. Sanz, R. G. Fernandez, and C. Vega, “A potential model for the study of ices and amorphous water: TIP4P/Ice,” J. Chem. Phys. 122, 234511 (2005).
  20. P. B. Louden and J. D. Gezelter, ‘‘Friction at ice-ih/water interfaces is governed by solid/liquid hydrogen-bonding,” J. Phys. Chem. C 121, 26764–26776 (2017), https://doi.org/10.1021/acs.jpcc.7b07169 .
  21. M. O. Robbins and M. H. Müser, “Computer simulations of friction, lubrication and wear,” in Modern Tribology Handbook, Boca Ratón (CRC-Press, 2000).
  22. C. J. Pipe, T. S. Majmudar, and G. H. McKinley, “High shear rate viscometry,” Rheol. Acta. 47, 621–642 (2008).
  23. I. de Almeida Ribeiro and M. de Koning, “Non-newtonian flow effects in supercooled water,” Phys. Rev. Research 2, 022004 (2020).
  24. H. Spikes and Z. Jie, “History, origins and predictions of elastohydrodynamic friction,” Tribol. Lett. 56, 1–25 (2014).
  25. Y. Zhao, Y. Wu, L. Bao, F. Zhou, and W. Liu, “A new mechanism of the interfacial water film dominating low ice friction,” J. Chem. Phys. 157, 234703 (2022), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0131249/16557491/234703_1_online.pdf .
  26. The thermodynamic state of the reference viscosity used in the work of [26] was not reported in the paper, but communicated to us privately.
  27. L. Baran, W. Rzysko, and L. G. MacDowell, “Self-diffusion and shear viscosity for the TIP4P/Ice water model,” J. Chem. Phys. 158, 064503 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0134932/16736496/064503_1_online.pdf .
  28. The timestep of the simulations was not reported in Ref.[26]. Real time estimates here are obtained using d⁢t=1𝑑𝑡1dt=1italic_d italic_t = 1 fs, as communicated to us privately by the authors.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.