Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Framework of Zero-Inflated Bayesian Negative Binomial Regression Models For Spatiotemporal Data (2402.04345v1)

Published 6 Feb 2024 in stat.ME and stat.CO

Abstract: Spatiotemporal data analysis with massive zeros is widely used in many areas such as epidemiology and public health. We use a Bayesian framework to fit zero-inflated negative binomial models and employ a set of latent variables from P\'olya-Gamma distributions to derive an efficient Gibbs sampler. The proposed model accommodates varying spatial and temporal random effects through Gaussian process priors, which have both the simplicity and flexibility in modeling nonlinear relationships through a covariance function. To conquer the computation bottleneck that GPs may suffer when the sample size is large, we adopt the nearest-neighbor GP approach that approximates the covariance matrix using local experts. For the simulation study, we adopt multiple settings with varying sizes of spatial locations to evaluate the performance of the proposed model such as spatial and temporal random effects estimation and compare the result to other methods. We also apply the proposed model to the COVID-19 death counts in the state of Florida, USA from 3/25/2020 through 7/29/2020 to examine relationships between social vulnerability and COVID-19 deaths.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.