Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bayesian Spatio-Temporal Extension to Poisson Auto-Regression: Modeling the Disease Infection Rate of COVID-19 in England (2304.14110v2)

Published 27 Apr 2023 in stat.ME and stat.AP

Abstract: The COVID-19 pandemic provided many modeling challenges to investigate the evolution of an epidemic process over areal units. A suitable encompassing model must describe the spatio-temporal variations of the disease infection rate of multiple areal processes while adjusting for local and global inputs. We develop an extension to Poisson Auto-Regression that incorporates spatio-temporal dependence to characterize the local dynamics while borrowing information among adjacent areas. The specification includes up to two sets of space-time random effects to capture the spatio-temporal dependence and a linear predictor depending on an arbitrary set of covariates. The proposed model, adopted in a fully Bayesian framework and implemented through a novel sparse-matrix representation in Stan, provides a framework for evaluating local policy changes over the whole spatial and temporal domain of the study. It has been validated through a substantial simulation study and applied to the weekly COVID-19 cases observed in the English local authority districts between May 2020 and March 2021. The model detects substantial spatial and temporal heterogeneity and allows a full evaluation of the impact of two alternative sets of covariates: the level of local restrictions in place and the value of the Google Mobility Indices. The paper also formalizes various novel model-based investigation methods for assessing additional aspects of disease epidemiology.

Summary

We haven't generated a summary for this paper yet.