Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Similarity-based Neighbor Selection for Graph LLMs (2402.03720v1)

Published 6 Feb 2024 in cs.LG, cs.AI, cs.CL, and cs.SI

Abstract: Text-attributed graphs (TAGs) present unique challenges for direct processing by Language Learning Models (LLMs), yet their extensive commonsense knowledge and robust reasoning capabilities offer great promise for node classification in TAGs. Prior research in this field has grappled with issues such as over-squashing, heterophily, and ineffective graph information integration, further compounded by inconsistencies in dataset partitioning and underutilization of advanced LLMs. To address these challenges, we introduce Similarity-based Neighbor Selection (SNS). Using SimCSE and advanced neighbor selection techniques, SNS effectively improves the quality of selected neighbors, thereby improving graph representation and alleviating issues like over-squashing and heterophily. Besides, as an inductive and training-free approach, SNS demonstrates superior generalization and scalability over traditional GNN methods. Our comprehensive experiments, adhering to standard dataset partitioning practices, demonstrate that SNS, through simple prompt interactions with LLMs, consistently outperforms vanilla GNNs and achieves state-of-the-art results on datasets like PubMed in node classification, showcasing LLMs' potential in graph structure understanding. Our research further underscores the significance of graph structure integration in LLM applications and identifies key factors for their success in node classification. Code is available at https://github.com/ruili33/SNS.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: