Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unsupervised Salient Patch Selection for Data-Efficient Reinforcement Learning (2402.03329v1)

Published 10 Jan 2024 in cs.CV and cs.AI

Abstract: To improve the sample efficiency of vision-based deep reinforcement learning (RL), we propose a novel method, called SPIRL, to automatically extract important patches from input images. Following Masked Auto-Encoders, SPIRL is based on Vision Transformer models pre-trained in a self-supervised fashion to reconstruct images from randomly-sampled patches. These pre-trained models can then be exploited to detect and select salient patches, defined as hard to reconstruct from neighboring patches. In RL, the SPIRL agent processes selected salient patches via an attention module. We empirically validate SPIRL on Atari games to test its data-efficiency against relevant state-of-the-art methods, including some traditional model-based methods and keypoint-based models. In addition, we analyze our model's interpretability capabilities.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: