Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Infrared Spectra Prediction for Diazo Groups Utilizing a Machine Learning Approach with Structural Attention Mechanism (2402.03112v1)

Published 5 Feb 2024 in cs.LG, cs.AI, and physics.chem-ph

Abstract: Infrared (IR) spectroscopy is a pivotal technique in chemical research for elucidating molecular structures and dynamics through vibrational and rotational transitions. However, the intricate molecular fingerprints characterized by unique vibrational and rotational patterns present substantial analytical challenges. Here, we present a machine learning approach employing a Structural Attention Mechanism tailored to enhance the prediction and interpretation of infrared spectra, particularly for diazo compounds. Our model distinguishes itself by honing in on chemical information proximal to functional groups, thereby significantly bolstering the accuracy, robustness, and interpretability of spectral predictions. This method not only demystifies the correlations between infrared spectral features and molecular structures but also offers a scalable and efficient paradigm for dissecting complex molecular interactions.

Summary

We haven't generated a summary for this paper yet.