Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Intent Profiling and Translation Through Emergent Communication (2402.02768v1)

Published 5 Feb 2024 in cs.AI, cs.LG, and cs.NI

Abstract: To effectively express and satisfy network application requirements, intent-based network management has emerged as a promising solution. In intent-based methods, users and applications express their intent in a high-level abstract language to the network. Although this abstraction simplifies network operation, it induces many challenges to efficiently express applications' intents and map them to different network capabilities. Therefore, in this work, we propose an AI-based framework for intent profiling and translation. We consider a scenario where applications interacting with the network express their needs for network services in their domain language. The machine-to-machine communication (i.e., between applications and the network) is complex since it requires networks to learn how to understand the domain languages of each application, which is neither practical nor scalable. Instead, a framework based on emergent communication is proposed for intent profiling, in which applications express their abstract quality-of-experience (QoE) intents to the network through emergent communication messages. Subsequently, the network learns how to interpret these communication messages and map them to network capabilities (i.e., slices) to guarantee the requested Quality-of-Service (QoS). Simulation results show that the proposed method outperforms self-learning slicing and other baselines, and achieves a performance close to the perfect knowledge baseline.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com