Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Closed 4-braids and the Jones unknot conjecture (2402.02553v2)

Published 4 Feb 2024 in math.GT, hep-th, math-ph, math.GR, math.MP, and math.RT

Abstract: The Jones problem is a question whether there is a non-trivial knot with the trivial Jones polynomial in one variable $q$. The answer to this fundamental question is still unknown despite numerous attempts to explore it. In braid presentation the case of 4-strand braids is already open. S. Bigelow showed in 2000 that if the Burau representation for four-strand braids is unfaithful, then there is an infinite number of non-trivial knots with the trivial two-variable HOMFLY-PT polynomial and hence, with the trivial Jones polynomial, since it is obtained from the HOMFLY-PT polynomial by the specialisation of one of the variables $A=q2$. In this paper, we study four-strand braids and ask whether there are non-trivial knots with the trivial Jones polynomial but a non-trivial HOMFLY-PT polynomial. We have discovered that there is a whole 1-parameter family, parameterised by the writhe number, of 2-variable polynomials that can be HOMFLY-PT polynomials of some knots. We explore various properties of the obtained hypothetical HOMFLY-PT polynomials and suggest several checks to test these formulas. A generalisation is also proposed for the case of a large number of strands.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: