Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

InceptionCapsule: Inception-Resnet and CapsuleNet with self-attention for medical image Classification (2402.02274v1)

Published 3 Feb 2024 in cs.CV, cs.LG, and eess.IV

Abstract: Initial weighting is significant in deep neural networks because the random selection of weights produces different outputs and increases the probability of overfitting and underfitting. On the other hand, vector-based approaches to extract vector features need rich vectors for more accurate classification. The InceptionCapsule approach is presented to alleviate these two problems. This approach uses transfer learning and the Inception-ResNet model to avoid random selection of weights, which takes initial weights from ImageNet. It also uses the output of Inception middle layers to generate rich vectors. Extracted vectors are given to a capsule network for learning, which is equipped with an attention technique. Kvasir data and BUSI with the GT dataset were used to evaluate this approach. This model was able to achieve 97.62 accuracies in 5-class classification and also achieved 94.30 accuracies in 8-class classification on Kvasir. In the BUSI with GT dataset, the proposed approach achieved accuracy=98.88, Precision=95.34, and F1-score=93.74, which are acceptable results compared to other approaches in the literature.

Citations (1)

Summary

We haven't generated a summary for this paper yet.