Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homogeneous Vector Capsules Enable Adaptive Gradient Descent in Convolutional Neural Networks (1906.08676v2)

Published 20 Jun 2019 in cs.CV and cs.LG

Abstract: Capsules are the name given by Geoffrey Hinton to vector-valued neurons. Neural networks traditionally produce a scalar value for an activated neuron. Capsules, on the other hand, produce a vector of values, which Hinton argues correspond to a single, composite feature wherein the values of the components of the vectors indicate properties of the feature such as transformation or contrast. We present a new way of parameterizing and training capsules that we refer to as homogeneous vector capsules (HVCs). We demonstrate, experimentally, that altering a convolutional neural network (CNN) to use HVCs can achieve superior classification accuracy without increasing the number of parameters or operations in its architecture as compared to a CNN using a single final fully connected layer. Additionally, the introduction of HVCs enables the use of adaptive gradient descent, reducing the dependence a model's achievable accuracy has on the finely tuned hyperparameters of a non-adaptive optimizer. We demonstrate our method and results using two neural network architectures. First, a very simple monolithic CNN that when using HVCs achieved a 63% improvement in top-1 classification accuracy and a 35% improvement in top-5 classification accuracy over the baseline architecture. Second, with the CNN architecture referred to as Inception v3 that achieved similar accuracies both with and without HVCs. Additionally, the simple monolithic CNN when using HVCs showed no overfitting after more than 300 epochs whereas the baseline showed overfitting after 30 epochs. We use the ImageNet ILSVRC 2012 classification challenge dataset with both networks.

Citations (13)

Summary

We haven't generated a summary for this paper yet.