Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CardioCaps: Attention-based Capsule Network for Class-Imbalanced Echocardiogram Classification (2403.09108v2)

Published 14 Mar 2024 in cs.CV

Abstract: Capsule Neural Networks (CapsNets) is a novel architecture that utilizes vector-wise representations formed by multiple neurons. Specifically, the Dynamic Routing CapsNets (DR-CapsNets) employ an affine matrix and dynamic routing mechanism to train capsules and acquire translation-equivariance properties, enhancing its robustness compared to traditional Convolutional Neural Networks (CNNs). Echocardiograms, which capture moving images of the heart, present unique challenges for traditional image classification methods. In this paper, we explore the potential of DR-CapsNets and propose CardioCaps, a novel attention-based DR-CapsNet architecture for class-imbalanced echocardiogram classification. CardioCaps comprises two key components: a weighted margin loss incorporating a regression auxiliary loss and an attention mechanism. First, the weighted margin loss prioritizes positive cases, supplemented by an auxiliary loss function based on the Ejection Fraction (EF) regression task, a crucial measure of cardiac function. This approach enhances the model's resilience in the face of class imbalance. Second, recognizing the quadratic complexity of dynamic routing leading to training inefficiencies, we adopt the attention mechanism as a more computationally efficient alternative. Our results demonstrate that CardioCaps surpasses traditional machine learning baseline methods, including Logistic Regression, Random Forest, and XGBoost with sampling methods and a class weight matrix. Furthermore, CardioCaps outperforms other deep learning baseline methods such as CNNs, ResNets, U-Nets, and ViTs, as well as advanced CapsNets methods such as EM-CapsNets and Efficient-CapsNets. Notably, our model demonstrates robustness to class imbalance, achieving high precision even in datasets with a substantial proportion of negative cases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. L. Lee and J. M. DeCara, “Point-of-care ultrasound,” Current Cardiology Reports, vol. 22, pp. 1–10, 2020.
  2. Y. Baribeau, A. Sharkey, O. Chaudhary, S. Krumm, H. Fatima, F. Mahmood, and R. Matyal, “Handheld point-of-care ultrasound probes: the new generation of pocus,” Journal of cardiothoracic and vascular anesthesia, vol. 34, no. 11, pp. 3139–3145, 2020.
  3. S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” Advances in neural information processing systems, vol. 30, 2017.
  4. T. Kavitha, P. P. Mathai, C. Karthikeyan, M. Ashok, R. Kohar, J. Avanija, and S. Neelakandan, “Deep learning based capsule neural network model for breast cancer diagnosis using mammogram images,” Interdisciplinary Sciences: Computational Life Sciences, pp. 1–17, 2021.
  5. H. Kang, T. Vu, and C. D. Yoo, “Learning imbalanced datasets with maximum margin loss,” in 2021 IEEE International Conference on Image Processing (ICIP), pp. 1269–1273, 2021.
  6. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.
  7. J. Gu, V. Tresp, and H. Hu, “Capsule network is not more robust than convolutional network,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (Los Alamitos, CA, USA), pp. 14304–14312, IEEE Computer Society, jun 2021.
  8. D. Ouyang, B. He, A. Ghorbani, N. Yuan, J. Ebinger, C. P. Langlotz, P. A. Heidenreich, R. A. Harrington, D. H. Liang, E. A. Ashley, et al., “Video-based ai for beat-to-beat assessment of cardiac function,” Nature, vol. 580, no. 7802, pp. 252–256, 2020.
  9. L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, Oct. 2001.
  10. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, (New York, NY, USA), p. 785–794, Association for Computing Machinery, 2016.
  11. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
  12. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.
  13. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, eds.), (Cham), pp. 234–241, Springer International Publishing, 2015.
  14. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” in International Conference on Learning Representations, 2021.
  15. G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with EM routing,” in International Conference on Learning Representations, 2018.
  16. V. Mazzia, F. Salvetti, and M. Chiaberge, “Efficient-CapsNet: capsule network with self-attention routing,” Scientific Reports, vol. 11, jul 2021.
  17. M. K. Cahalan, W. Stewart, A. Pearlman, M. Goldman, P. Sears-Rogan, M. Abel, I. Russell, J. Shanewise, C. Troianos, et al., “American society of echocardiography and society of cardiovascular anesthesiologists task force guidelines for training in perioperative echocardiography,” Journal of the American Society of Echocardiography, vol. 15, no. 6, pp. 647–652, 2002.
  18. K. Ratnayaka, A. Z. Faranesh, M. S. Hansen, A. M. Stine, M. Halabi, I. M. Barbash, W. H. Schenke, V. J. Wright, L. P. Grant, P. Kellman, et al., “Real-time mri-guided right heart catheterization in adults using passive catheters,” European heart journal, vol. 34, no. 5, pp. 380–389, 2013.
  19. I. Scholl, T. Aach, T. M. Deserno, and T. Kuhlen, “Challenges of medical image processing,” Computer science-Research and development, vol. 26, pp. 5–13, 2011.
  20. M. I. Razzak, S. Naz, and A. Zaib, “Deep learning for medical image processing: Overview, challenges and the future,” Classification in BioApps: Automation of Decision Making, pp. 323–350, 2018.
  21. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.
  22. Y. Ho and S. Wookey, “The real-world-weight cross-entropy loss function: Modeling the costs of mislabeling,” IEEE access, vol. 8, pp. 4806–4813, 2019.
  23. D. Wang and Q. Liu, “An optimization view on dynamic routing between capsules,” 2018.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com