Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DRSM: efficient neural 4d decomposition for dynamic reconstruction in stationary monocular cameras (2402.00740v1)

Published 1 Feb 2024 in cs.CV

Abstract: With the popularity of monocular videos generated by video sharing and live broadcasting applications, reconstructing and editing dynamic scenes in stationary monocular cameras has become a special but anticipated technology. In contrast to scene reconstructions that exploit multi-view observations, the problem of modeling a dynamic scene from a single view is significantly more under-constrained and ill-posed. Inspired by recent progress in neural rendering, we present a novel framework to tackle 4D decomposition problem for dynamic scenes in monocular cameras. Our framework utilizes decomposed static and dynamic feature planes to represent 4D scenes and emphasizes the learning of dynamic regions through dense ray casting. Inadequate 3D clues from a single-view and occlusion are also particular challenges in scene reconstruction. To overcome these difficulties, we propose deep supervised optimization and ray casting strategies. With experiments on various videos, our method generates higher-fidelity results than existing methods for single-view dynamic scene representation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.