Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Bi-Objective Optimization Based Acquisition Strategy for Batch Bayesian Global Optimization (2402.00726v1)

Published 1 Feb 2024 in math.OC

Abstract: In this paper, we deal with batch Bayesian Optimization (Bayes-Opt) problems over a box and we propose a novel bi-objective optimization (BOO) acquisition strategy to sample points where to evaluate the objective function. The BOO problem involves the Gaussian Process posterior mean and variance functions, which, in most of the acquisition strategies from the literature, are generally used in combination, frequently through scalarization. However, such scalarization could compromise the Bayes-Opt process performance, as getting the desired trade-off between exploration and exploitation is not trivial in most cases. We instead aim to reconstruct the Pareto front of the BOO problem based on optimizing both the posterior mean as well as the variance, thus generating multiple trade-offs without any a priori knowledge. The reconstruction is performed through the Non-dominated Sorting Memetic Algorithm (NSMA), recently proposed in the literature and proved to be effective in solving hard MOO problems. Finally, we present two clustering approaches, each of them operating on a different space, to select potentially optimal points from the Pareto front. We compare our methodology with well-known acquisition strategies from the literature, showing its effectiveness on a wide set of experiments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.