Papers
Topics
Authors
Recent
2000 character limit reached

Randomly Monitored Quantum Codes (2402.00145v1)

Published 31 Jan 2024 in quant-ph, cond-mat.stat-mech, cond-mat.str-el, and hep-th

Abstract: Quantum measurement has conventionally been regarded as the final step in quantum information processing, which is essential for reading out the processed information but collapses the quantum state into a classical state. However, recent studies have shown that quantum measurement itself can induce novel quantum phenomena. One seminal example is a monitored random circuit, which can generate long-range entanglement faster than a random unitary circuit. Inspired by these results, in this paper, we address the following question: When quantum information is encoded in a quantum error-correcting code, how many physical qubits should be randomly measured to destroy the encoded information? We investigate this question for various quantum error-correcting codes and derive the necessary and sufficient conditions for destroying the information through measurements. In particular, we demonstrate that for a large class of quantum error-correcitng codes, it is impossible to destroy the encoded information through random single-qubit Pauli measurements when a tiny portion of physical qubits is still unmeasured. Our results not only reveal the extraordinary robustness of quantum codes under measurement decoherence, but also suggest potential applications in quantum information processing tasks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. Y. Li and M. P. A. Fisher, Phys. Rev. B 103, 104306 (2021).
  2. M. J. Gullans and D. A. Huse, Phys. Rev. Lett. 125, 070606 (2020a).
  3. M. J. Gullans and D. A. Huse, Phys. Rev. X 10, 041020 (2020b).
  4. B. Yoshida, “Projective measurement of black holes,”  (2022), arXiv:2203.04968 .
  5. S. D. Thomas Botzung, Michael Buchhold and M. Müller,   (2023), arXiv:2311.14338 .
  6. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
  7. S. Bravyi and B. Terhal, New. J. Phys. 11, 043029 (2009).
  8. D. Poulin, Phys. Rev. Lett. 95 (2005).
  9. D. Bacon, Phys. Rev. A 73, 012340 (2006).
  10. S. Bravyi, Phys. Rev. A 83, 012320 (2011).
  11. B. Yoshida and I. L. Chuang, Phys. Rev. A 81, 052302 (2010).
  12. J. Haah and J. Preskill,   (2010), arXiv:1011.3529 .
  13. H. Bombin and M. A. Martin-Delgado, Phys. Rev. B 75 (2007).
  14. S. B. Bravyi and A. Y. Kitaev,  (1998), arXiv:quant-ph/9811052 .
  15. B. Yoshida,   (2021), arXiv:2109.08691 .
  16. B. Yoshida and A. Kitaev,   (2017), arXiv:1710.03363 .
  17. D. A. Roberts and B. Yoshida, JHEP 4, 121 (2017).
  18. T. Takayanagi, Phys. Rev. Lett 107 (2011).
  19. S. Aaronson,  (2017), arXiv:1711.01053 .
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 17 likes about this paper.