Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network-based Topic Structure Visualization (2401.17855v1)

Published 31 Jan 2024 in stat.AP, cs.HC, and cs.IR

Abstract: In the real world, many topics are inter-correlated, making it challenging to investigate their structure and relationships. Understanding the interplay between topics and their relevance can provide valuable insights for researchers, guiding their studies and informing the direction of research. In this paper, we utilize the topic-words distribution, obtained from topic models, as item-response data to model the structure of topics using a latent space item response model. By estimating the latent positions of topics based on their distances toward words, we can capture the underlying topic structure and reveal their relationships. Visualizing the latent positions of topics in Euclidean space allows for an intuitive understanding of their proximity and associations. We interpret relationships among topics by characterizing each topic based on representative words selected using a newly proposed scoring scheme. Additionally, we assess the maturity of topics by tracking their latent positions using different word sets, providing insights into the robustness of topics. To demonstrate the effectiveness of our approach, we analyze the topic composition of COVID-19 studies during the early stage of its emergence using biomedical literature in the PubMed database. The software and data used in this paper are publicly available at https://github.com/jeon9677/gViz .

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yeseul Jeon (9 papers)
  2. Jina Park (9 papers)
  3. Ick Hoon Jin (21 papers)
  4. Dongjun Chungc (1 paper)

Summary

We haven't generated a summary for this paper yet.