Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On exact covering with unit disks (2401.15821v1)

Published 29 Jan 2024 in math.MG

Abstract: We study the problem of covering a given point set in the plane by unit disks so that each point is covered exactly once. We prove that 17 points can always be exactly covered. On the other hand, we construct a set of 657 points where an exact cover is not possible.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. Covering points with disjoint unit disks. In Canadian Conference on Computational Geometry, 2012. URL: https://api.semanticscholar.org/CorpusID:16280099.
  2. Local search strikes again: PTAS for variants of geometric covering and packing. J. Comb. Optim., 39(2):618–635, 2020. doi:10.1007/s10878-019-00432-y.
  3. Finite and infinite packings. Journal für die reine und angewandte Mathematik, 1994:165–192, 01 1994. doi:10.1515/crll.1994.453.165.
  4. Hans Frederick Blichfeldt. The minimum value of quadratic forms, and the closest packing of spheres. Mathematische Annalen, 101(1):605–608, 1929. doi:10.1007/BF01454863.
  5. Károly Böröczky, Jr. Finite Packing and Covering. Cambridge Tracts in Mathematics. Cambridge University Press, 2004.
  6. John H. Conway and Neil J. A. Sloane. Sphere Packings, Lattices and Groups, volume 290 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York, Inc., 3rd edition, 1999.
  7. Veit Elser. Packing-constrained point coverings, 2011. arXiv:1101.3468.
  8. László Fejes Tóth. Research problem 13. Periodica Mathematica Hungarica, 6(2):197–199, 1975.
  9. Packings, sausages and catastrophes. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2020. doi:10.1007/s13366-020-00502-x.
  10. 2007 Technology Analyst Day, Jul 2007. URL: http://web.archive.org/web/20081209041620/http://www.amd.com/us-en/assets/content_type/DownloadableAssets/July_2007_AMD_Analyst_Day_Phil_Hester-Bob_Drebin.pdf [cited 2023-10-24].
  11. Naoki Inaba, 2008. URL: http://inabapuzzle.com/hirameki/suuri_4.html.
  12. Naoki Inaba, 2008. URL: http://inabapuzzle.com/hirameki/suuri_ans4.html.
  13. Polyhedral and Algebraic Methods in Computational Geometry. Universitext. Springer, 2013.
  14. Exact cover via satisfiability: An empirical study. In David Cohen, editor, Principles and Practice of Constraint Programming – CP 2010, pages 297–304. Springer Berlin Heidelberg, 2010.
  15. Donald E. Knuth. Dancing links, 2000. arXiv:cs/0011047.
  16. Donald E. Knuth. The Art of Computer Programming, volume 4B. Pearson Education, Inc., 2023.
  17. Gabriele Nebe and Neil J. A. Sloane. Table of densest packings presently known, Feb 2012. URL: math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/density.html [cited 2024-01-28].
  18. On covering of any point configuration by disjoint unit disks. Geombinatorics, 22(1):14–23, 2012.
  19. David Wells. The Penguin Dictionary of Curious and Interesting Geometry. Penguin Books, 1991.
  20. Peter Winkler. Puzzled: Solutions and sources. Commun. ACM, 53(9):110, Sep 2010. doi:10.1145/1810891.1810917.
  21. Chuanming Zong. Sphere Packings. Universitext. Springer-Verlag New York, Inc., 1999.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: