On Sparse Covers of Minor Free Graphs, Low Dimensional Metric Embeddings, and other applications
Abstract: Given a metric space $(X,d_X)$, a $(\beta,s,\Delta)$-sparse cover is a collection of clusters $\mathcal{C}\subseteq P(X)$ with diameter at most $\Delta$, such that for every point $x\in X$, the ball $B_X(x,\frac\Delta\beta)$ is fully contained in some cluster $C\in \mathcal{C}$, and $x$ belongs to at most $s$ clusters in $\mathcal{C}$. Our main contribution is to show that the shortest path metric of every $K_r$-minor free graphs admits $(O(r),O(r2),\Delta)$-sparse cover, and for every $\epsilon>0$, $(4+\epsilon,O(\frac1\epsilon)r,\Delta)$-sparse cover (for arbitrary $\Delta>0$). We then use this sparse cover to show that every $K_r$-minor free graph embeds into $\ell_\infty{\tilde{O}(\frac1\epsilon){r+1}\cdot\log n}$ with distortion $3+\epsilon$ (resp. into $\ell_\infty{\tilde{O}(r2)\cdot\log n}$ with distortion $O(r)$). Further, among other applications, this sparse cover immediately implies an algorithm for the oblivious buy-at-bulk problem in fixed minor free graphs with the tight approximation factor $O(\log n)$ (previously nothing beyond general graphs was known).
- Advances in metric embedding theory. Advances in Mathematics, 228(6):3026–3126, 2011, doi:https://doi.org/10.1016/j.aim.2011.08.003.
- Ramsey spanning trees and their applications. ACM Trans. Algorithms, 16(2):19:1–19:21, 2020. preliminary version published in SODA 2018, doi:10.1145/3371039.
- Metric embedding via shortest path decompositions. SIAM J. Comput., 51(2):290–314, 2022. a priliminary version apperared in the proceedings of STOC 18, doi:10.1137/19m1296021.
- I. Abraham and C. Gavoille. Object location using path separators. In Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of Distributed Computing, PODC ’06, pages 188–197, 2006. Full version: https://www.cse.huji.ac.il/~ittaia/papers/AG-TR.pdf, doi:10.1145/1146381.1146411.
- Cops, robbers, and threatening skeletons: Padded decomposition for minor-free graphs. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC ‘14, page 79–88, 2014, doi:10.1145/2591796.2591849.
- Cops, robbers, and threatening skeletons: Padded decomposition for minor-free graphs. SIAM J. Comput., 48(3):1120–1145, 2019. preliminary version published in STOC 2014, doi:10.1137/17M1112406.
- Routing with improved communication-space trade-off. In R. Guerraoui, editor, Distributed Computing, 18th International Conference, DISC 2004, Amsterdam, The Netherlands, October 4-7, 2004, Proceedings, volume 3274 of Lecture Notes in Computer Science, pages 305–319. Springer, 2004, doi:10.1007/978-3-540-30186-8_22.
- Compact routing for graphs excluding a fixed minor. In P. Fraigniaud, editor, Distributed Computing, 19th International Conference, DISC 2005, Cracow, Poland, September 26-29, 2005, Proceedings, volume 3724 of Lecture Notes in Computer Science, pages 442–456. Springer, 2005, doi:10.1007/11561927_32.
- On space-stretch trade-offs: lower bounds. In P. B. Gibbons and U. Vishkin, editors, SPAA 2006: Proceedings of the 18th Annual ACM Symposium on Parallelism in Algorithms and Architectures, Cambridge, Massachusetts, USA, July 30 - August 2, 2006, pages 207–216. ACM, 2006, doi:10.1145/1148109.1148143.
- Compact name-independent routing with minimum stretch. ACM Trans. Algorithms, 4(3):37:1–37:12, 2008, doi:10.1145/1367064.1367077.
- Strong-diameter decompositions of minor free graphs. Theory of Computing Systems, 47(4):837–855, 2010, doi:10.1007/s00224-010-9283-6.
- On buffer-economical store-and-forward deadlock prevention. IEEE Trans. Commun., 42(11):2934–2937, 1994, doi:10.1109/26.328973.
- A graph-theoretic game and its application to the k-server problem. SIAM J. Comput., 24(1):78–100, 1995. preliminary version published in On-Line Algorithms 1991, doi:10.1137/S0097539792224474.
- T. Andreae. On a pursuit game played on graphs for which a minor is excluded. J. Comb. Theory, Ser. B, 41(1):37–47, 1986, doi:10.1016/0095-8956(86)90026-2.
- B. Awerbuch and D. Peleg. Network synchronization with polylogarithmic overhead. In Proc. 31st IEEE Symp. on Foundations of Computer Science, pages 514–522, 1990.
- B. Awerbuch and D. Peleg. Sparse partitions. In Proceedings of the 31st IEEE Symposium on Foundations of Computer Science (FOCS), pages 503–513, 1990, doi:10.1109/FSCS.1990.89571.
- B. Awerbuch and D. Peleg. Concurrent online tracking of mobile users. In L. Chapin, editor, Proceedings of the Conference on Communications Architecture & Protocols, SIGCOMM 1991, Zürich, Switzerland, September 3-6, 1991, pages 221–233. ACM, 1991, doi:10.1145/115992.116013.
- H. Attiya and J. L. Welch. Distributed computing - fundamentals, simulations, and advanced topics (2. ed.). Wiley series on parallel and distributed computing. Wiley, 2004.
- Y. Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In 37th Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October, 1996, pages 184–193, 1996, doi:10.1109/SFCS.1996.548477.
- One tree to rule them all: Poly-logarithmic universal steiner tree. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 60–76, 2023, doi:10.1109/FOCS57990.2023.00012.
- Split and join: Strong partitions and universal steiner trees for graphs. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 81–90. IEEE Computer Society, 2012, doi:10.1109/FOCS.2012.45.
- Covering metric spaces by few trees. In 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, pages 20:1–20:16, 2019, doi:10.4230/LIPIcs.ICALP.2019.20.
- On notions of distortion and an almost minimum spanning tree with constant average distortion. J. Comput. Syst. Sci., 105:116–129, 2019. preliminary version published in SODA 2016, doi:10.1016/j.jcss.2019.04.006.
- Online duet between metric embeddings and minimum-weight perfect matchings. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 4564–4579, 2024, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611977912.162, doi:10.1137/1.9781611977912.162.
- Y. Bartal and L. Gottlieb. Approximate nearest neighbor search for ℓpsubscriptℓ𝑝\ell_{p}roman_ℓ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-spaces (2<p<∞2𝑝2<p<\infty2 < italic_p < ∞). Theor. Comput. Sci., 757:27–35, 2019, doi:10.1016/J.TCS.2018.07.011.
- Sparse covers for planar graphs and graphs that exclude a fixed minor. Algorithmica, 69(3):658–684, 2014, doi:10.1007/S00453-013-9757-4.
- J. Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel Journal of Mathematics, 52(1-2):46–52, 1985, doi:10.1007/BF02776078.
- Covering planar metrics (and beyond): O(1) trees suffice. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 2231–2261, 2023, doi:10.1109/FOCS57990.2023.00139.
- Shortcut partitions in minor-free graphs: Steiner point removal, distance oracles, tree covers, and more. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 5300–5331, 2024, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611977912.191, doi:10.1137/1.9781611977912.191.
- Streaming facility location in high dimension via new geometric hashing. CoRR, abs/2204.02095, 2022. conference version published in STOC 2022, arXiv:2204.02095, doi:10.48550/ARXIV.2204.02095.
- On light spanners, low-treewidth embeddings and efficient traversing in minor-free graphs. CoRR, abs/2009.05039, 2020. To appear in FOCS 2020,https://arxiv.org/abs/2009.05039, arXiv:2009.05039.
- S. Chechik. Compact routing schemes with improved stretch. In P. Fatourou and G. Taubenfeld, editors, ACM Symposium on Principles of Distributed Computing, PODC ’13, Montreal, QC, Canada, July 22-24, 2013, pages 33–41. ACM, 2013, doi:10.1145/2484239.2484268.
- Y. K. Cheung. Steiner point removal - distant terminals don’t (really) bother. In A. Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1353–1360. SIAM, 2018, doi:10.1137/1.9781611975031.89.
- Planar and minor-free metrics embed into metrics of polylogarithmic treewidth with expected multiplicative distortion arbitrarily close to 1*. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 2262–2277, 2023, doi:10.1109/FOCS57990.2023.00140.
- Terminal embeddings. Theoretical Computer Science, 697:1 – 36, 2017, doi:https://doi.org/10.1016/j.tcs.2017.06.021.
- Prioritized metric structures and embedding. SIAM J. Comput., 47(3):829–858, 2018, doi:10.1137/17M1118749.
- M. Elkin and O. Neiman. Lossless prioritized embeddings. SIAM J. Discret. Math., 36(3):1529–1550, 2022, doi:10.1137/21M1436221.
- Space-efficient path-reporting approximate distance oracles. Theor. Comput. Sci., 651:1–10, 2016, doi:10.1016/j.tcs.2016.07.038.
- M. Elkin and S. Pettie. A linear-size logarithmic stretch path-reporting distance oracle for general graphs. ACM Trans. Algorithms, 12(4):50:1–50:31, 2016, doi:10.1145/2888397.
- P. Erdős. Extremal problems in graph theory. In in “Theory of Graphs and Its Applications,” Proc. Sympos. Smolenice, pages 29–36, 1964.
- M. Elkin and I. Shabat. Path-reporting distance oracles with logarithmic stretch and size o(n log log n). In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 2278–2311, 2023, doi:10.1109/FOCS57990.2023.00141.
- Labelings vs. embeddings: On distributed and prioritized representations of distances. Discret. Comput. Geom., 2023, doi:10.1007/s00454-023-00565-2.
- Light, reliable spanners. CoRR, abs/2307.16612, 2023, arXiv:2307.16612, doi:10.48550/ARXIV.2307.16612.
- M. Farach-Colton and P. Indyk. Approximate nearest neighbor algorithms for hausdorff metrics via embeddings. In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 171–180. IEEE Computer Society, 1999, doi:10.1109/SFFCS.1999.814589.
- A. Filtser. On strong diameter padded decompositions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2019, September 20-22, 2019, Massachusetts Institute of Technology, Cambridge, MA, USA, pages 6:1–6:21, 2019, doi:10.4230/LIPIcs.APPROX-RANDOM.2019.6.
- A. Filtser. Steiner point removal with distortion O(logk)𝑂𝑙𝑜𝑔𝑘{O}(logk)italic_O ( italic_l italic_o italic_g italic_k ) using the relaxed-voronoi algorithm. SIAM J. Comput., 48(2):249–278, 2019, doi:10.1137/18M1184400.
- A. Filtser. A face cover perspective to ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT embeddings of planar graphs. In S. Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1945–1954. SIAM, 2020, doi:10.1137/1.9781611975994.120.
- A. Filtser. Scattering and sparse partitions, and their applications. In A. Czumaj, A. Dawar, and E. Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 47:1–47:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.ICALP.2020.47.
- A. Filtser. Hop-constrained metric embeddings and their applications. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 492–503. IEEE, 2021, doi:10.1109/FOCS52979.2021.00056.
- A. Filtser. Labeled nearest neighbor search and metric spanners via locality sensitive orderings. In E. W. Chambers and J. Gudmundsson, editors, 39th International Symposium on Computational Geometry, SoCG 2023, June 12-15, 2023, Dallas, Texas, USA, volume 258 of LIPIcs, pages 33:1–33:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, doi:10.4230/LIPIcs.SoCG.2023.33.
- Embedding planar graphs into low-treewidth graphs with applications to efficient approximation schemes for metric problems. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ‘19, page 1069–1088, 2019, doi:10.1137/1.9781611975482.66.
- Relaxed voronoi: A simple framework for terminal-clustering problems. In J. T. Fineman and M. Mitzenmacher, editors, 2nd Symposium on Simplicity in Algorithms, SOSA 2019, January 8-9, 2019, San Diego, CA, USA, volume 69 of OASIcs, pages 10:1–10:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, doi:10.4230/OASICS.SOSA.2019.10.
- A. Filtser and H. Le. Clan embeddings into trees, and low treewidth graphs. In S. Khuller and V. V. Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 342–355. ACM, 2021, doi:10.1145/3406325.3451043.
- A. Filtser and H. Le. Locality-sensitive orderings and applications to reliable spanners. In S. Leonardi and A. Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1066–1079. ACM, 2022, doi:10.1145/3519935.3520042.
- A. Filtser and H. Le. Low treewidth embeddings of planar and minor-free metrics. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 1081–1092. IEEE, 2022, doi:10.1109/FOCS54457.2022.00105.
- A. Filtser and O. Neiman. Light spanners for high dimensional norms via stochastic decompositions. Algorithmica, 2022, doi:10.1007/s00453-022-00994-0.
- A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, November 2004. preliminary version published in STOC 2003, doi:10.1016/j.jcss.2004.04.011.
- J. Fakcharoenphol and K. Talwar. An improved decomposition theorem for graphs excluding a fixed minor. In RANDOM-APPROX, pages 36–46, 2003.
- Oblivious network design. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 970–979. ACM Press, 2006.
- Cuts, trees and l11{}_{\mbox{1}}start_FLOATSUBSCRIPT 1 end_FLOATSUBSCRIPT-embeddings of graphs. Comb., 24(2):233–269, 2004, doi:10.1007/S00493-004-0015-X.
- Euclidean spanners in high dimensions. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 804–809, 2013, doi:10.1137/1.9781611973105.57.
- Reliable spanners for metric spaces. ACM Trans. Algorithms, 19(1):7:1–7:27, 2023, doi:10.1145/3563356.
- D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952, doi:10.1109/JRPROC.1952.273898.
- F. K. Hwang. On steiner minimal trees with rectilinear distance. SIAM Journal on Applied Mathematics, 30(1):104–114, 1976, arXiv:https://doi.org/10.1137/0130013, doi:10.1137/0130013.
- Online embeddings. In M. J. Serna, R. Shaltiel, K. Jansen, and J. D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 13th International Workshop, APPROX 2010, and 14th International Workshop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings, volume 6302 of Lecture Notes in Computer Science, pages 246–259. Springer, 2010, doi:10.1007/978-3-642-15369-3_19.
- P. Indyk. On approximate nearest neighbors in non-euclidean spaces. In 39th Annual Symposium on Foundations of Computer Science, FOCS ’98, November 8-11, 1998, Palo Alto, California, USA, pages 148–155. IEEE Computer Society, 1998, doi:10.1109/SFCS.1998.743438.
- P. Indyk. Approximate nearest neighbor algorithms for Fréchet distance via product metrics. In Proceedings of the 8th Symposium on Computational Geometry, pages 102–106, Barcelona, Spain, June 2002. ACM Press, doi:10.1145/513400.513414.
- M. Imase and B. M. Waxman. Dynamic steiner tree problem. SIAM J. Discret. Math., 4(3):369–384, 1991, doi:10.1137/0404033.
- W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. Contemporary Mathematics, 26:189–206, 1984. see here.
- Universal approximations for tsp, steiner tree, and set cover. In H. N. Gabow and R. Fagin, editors, Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 386–395. ACM, 2005, doi:10.1145/1060590.1060649.
- D. S. Johnson. The NP-completeness column: An ongoing guide (column 19). Journal of Algorithms, 8(3):438–448, 1987.
- Cutting corners cheaply, or how to remove steiner points. SIAM J. Comput., 44(4):975–995, 2015, doi:10.1137/140951382.
- P. N. Klein. Preprocessing an undirected planar network to enable fast approximate distance queries. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA, pages 820–827, 2002. see here.
- Measured descent: a new embedding method for finite metrics. Geometric and Functional Analysis, 15(4):839–858, 2005. preliminary version published in FOCS 2004, doi:10.1007/s00039-005-0527-6.
- Flow-cut gaps and face covers in planar graphs. In T. M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 525–534. SIAM, 2019, doi:10.1137/1.9781611975482.33.
- Huffman codes and self-information. IEEE Trans. Inf. Theory, 22(3):337–340, 1976, doi:10.1109/TIT.1976.1055554.
- Excluded minors, network decomposition, and multicommodity flow. In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, STOC ’93, pages 682–690, New York, NY, USA, 1993. ACM, doi:http://doi.acm.org/10.1145/167088.167261.
- N. Kumar. An approximate generalization of the okamura-seymour theorem. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 1093–1101. IEEE, 2022, doi:10.1109/FOCS54457.2022.00106.
- The geometry of graphs and some of its algorithmic applications. Comb., 15(2):215–245, 1995. preliminary version published in FOCS 1994, doi:10.1007/BF01200757.
- J. R. Lee and P. Raghavendra. Coarse differentiation and multi-flows in planar graphs. Discret. Comput. Geom., 43(2):346–362, 2010, doi:10.1007/S00454-009-9172-4.
- H. Le and S. Solomon. A unified framework for light spanners. In B. Saha and R. A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 295–308. ACM, 2023, doi:10.1145/3564246.3585185.
- N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
- J. Matoušek. On the distortion required for embedding finite metric spaces into normed spaces. Israel Journal of Mathematics, 93(1):333–344, 1996, doi:10.1007/BF02761110.
- Parallel graph decompositions using random shifts. In G. E. Blelloch and B. Vöcking, editors, 25th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’13, Montreal, QC, Canada - July 23 - 25, 2013, pages 196–203. ACM, 2013, doi:10.1145/2486159.2486180.
- O. Neiman. Low dimensional embeddings of doubling metrics. Theory Comput. Syst., 58(1):133–152, 2016, doi:10.1007/S00224-014-9567-3.
- I. Newman and Y. Rabinovich. A lower bound on the distortion of embedding planar metrics into euclidean space. In SCG ’02: Proceedings of the eighteenth annual symposium on Computational geometry, pages 94–96. ACM Press, 2002, doi:http://doi.acm.org/10.1145/513400.513412.
- I. Newman and Y. Rabinovich. Online embedding of metrics. In S. Albers, editor, 17th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2020, June 22-24, 2020, Tórshavn, Faroe Islands, volume 162 of LIPIcs, pages 32:1–32:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPICS.SWAT.2020.32.
- H. Okamura and P. Seymour. Multicommodity flows in planar graphs. Journal of Combinatorial Theory, Series B, 31(1):75 – 81, 1981, doi:http://dx.doi.org/10.1016/S0095-8956(81)80012-3.
- D. Peleg. Distance-dependent distributed directories. Inf. Comput., 103(2):270–298, 1993, doi:10.1006/INCO.1993.1020.
- D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia, PA, 2000, doi:10.1137/1.9780898719772.
- D. Peleg and E. Upfal. A trade-off between space and efficiency for routing tables. J. ACM, 36(3):510–530, 1989, doi:10.1145/65950.65953.
- S. Rao. Small distortion and volume preserving embeddings for planar and Euclidean metrics. In Proceedings of the Fifteenth Annual Symposium on Computational Geometry, Miami Beach, Florida, USA, June 13-16, 1999, pages 300–306, 1999, doi:10.1145/304893.304983.
- N. Robertson and P. D. Seymour. Graph minors. XVI. Excluding a non-planar graph. Journal of Combinatoral Theory Series B, 89(1):43–76, 2003, doi:10.1016/S0095-8956(03)00042-X.
- Oblivious buy-at-bulk in planar graphs. In N. Katoh and A. Kumar, editors, WALCOM: Algorithms and Computation - 5th International Workshop, WALCOM 2011, New Delhi, India, February 18-20, 2011. Proceedings, volume 6552 of Lecture Notes in Computer Science, pages 33–44. Springer, 2011, doi:10.1007/978-3-642-19094-0_6.
- M. Thorup. Compact oracles for reachability and approximate distances in planar digraphs. Journal of the ACM, 51(6):993–1024, 2004, doi:10.1145/1039488.1039493.
- M. Thorup. Compact oracles for reachability and approximate distances in planar digraphs. J. ACM, 51(6):993–1024, November 2004, doi:10.1145/1039488.1039493.
- M. Thorup and U. Zwick. Compact routing schemes. In Proceedings of the Thirteenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 2001, Heraklion, Crete Island, Greece, July 4-6, 2001, pages 1–10, 2001, doi:10.1145/378580.378581.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.