Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Strong Diameter Padded Decompositions (1906.09783v3)

Published 24 Jun 2019 in cs.DS and cs.CG

Abstract: Given a weighted graph $G=(V,E,w)$, a partition of $V$ is $\Delta$-bounded if the diameter of each cluster is bounded by $\Delta$. A distribution over $\Delta$-bounded partitions is a $\beta$-padded decomposition if every ball of radius $\gamma\Delta$ is contained in a single cluster with probability at least $e{-\beta\cdot\gamma}$. The weak diameter of a cluster $C$ is measured w.r.t. distances in $G$, while the strong diameter is measured w.r.t. distances in the induced graph $G[C]$. The decomposition is weak/strong according to the diameter guarantee. Formerly, it was proven that $K_r$ minor free graphs admit weak decompositions with padding parameter $O(r)$, while for strong decompositions only $O(r2)$ padding parameter was known. Furthermore, for the case of a graph $G$, for which the induced shortest path metric $d_G$ has doubling dimension $d$, a weak $O(d)$-padded decomposition was constructed, which is also known to be tight. For the case of strong diameter, nothing was known. We construct strong $O(r)$-padded decompositions for $K_r$ minor free graphs, matching the state of the art for weak decompositions. Similarly, for graphs with doubling dimension $d$ we construct a strong $O(d)$-padded decomposition, which is also tight. We use this decomposition to construct strong $\left(O(d),\tilde{O}(d)\right)$ sparse cover scheme for such graphs. Our new decompositions and cover have implications to approximating unique games, the construction of light and sparse spanners, and for path reporting distance oracles.

Citations (20)

Summary

We haven't generated a summary for this paper yet.