Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Gaseous Diffusion as a Correlated Random Walk (2401.13571v3)

Published 24 Jan 2024 in cond-mat.soft and cond-mat.stat-mech

Abstract: The mean square displacement per collision of a molecule immersed in a gas at equilibrium is given by its mean square displacement between two consecutive collisions (mean square free path) corrected by a prefactor in the form of a series. The $n$-th term of the series is proportional to the mean value of the scalar product $\rb_1 \cdot \rb_{n}$, where $\rb_i$ is the displacement of the molecule between the $(i-1)$-th and $i$-th collisions. Simple arguments are used to obtain approximate expressions for each term. The key finding is that the ratio of consecutive terms in the series closely approximates the so-called mean persistence ratio. Exact expressions for the terms in the series are considered and their ratios for several consecutive terms are calculated for the case of hard spheres, showing an excellent agreement with the mean persistence ratio. These theoretical results are confirmed by solving the Boltzmann equation by means of the direct simulation Monte Carlo method. By summing the series, the mean square displacement and the diffusion coefficient can be determined using only two quantities: the mean square free path and the mean persistence ratio. A simple and an improved expression for the diffusion coefficient $D$ are considered and compared with the so-called first and second Sonine approximations to $D$ as well as with computer simulations of the Boltzmann equation. It is found that the improved diffusion coefficient shows very good agreement with simulation results over all intruder and molecule mass ranges. When the intruder mass is smaller than that of the gas molecules, the improved formula even outperforms the first Sonine approximation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases (Cambridge University Press, Cambridge, 1970).
  2. C. Cercignani, Ludwig Boltzmann. The Man Who Trusted Atoms (Oxford University Press, 1998).
  3. F. Reif, Fundamentals of Statistical and Thermal Physics, international student ed. (McGraw-Hill Kogakusha Tokyo, 1965).
  4. D. A. McQuarrie, Statistical Mechanics (Harper and Row, 1975).
  5. W. H. Furry, On the elementary explanation of diffusion phenomena in gases, Am. J. Phys. 16, 63 (1948).
  6. L. M. Yang, Kinetic theory of diffusion in gases and liquids I. Diffusion and the Brownian motion, Proc. R. Soc. Lond. A 198, 94 (1949).
  7. W. H. Furry and P. H. Pitkanen, Gaseous diffusion as a random process, J. Chem. Phys. 19, 729 (1951).
  8. L. Monchick, Equivalence of the Chapman-Enskog and the mean-free-path theory of gases, Phys. Fluids 5, 1393 (1962).
  9. N. D. Kosov, Elementary kinetic theory of diffusion in gases, J. Eng. Phys. Thermophys. 42, 181 (1982).
  10. J. Jeans, LXX. The persistence of molecular velocities in the kinetic theory of gases, London Edinburgh Philos. Mag. J. Sci. 8, 700 (1904).
  11. J. Jeans, An Introduction to the Kinetic Theory of Gases (Cambridge University Press, 2009).
  12. L. Monchick and E. A. Mason, Free-Flight Theory of Gas Mixtures, Phys. Fluids 10, 1377 (1967).
  13. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows (Clarendon, Oxford, 1994).
  14. V. Garzó, Granular Gaseous Flows (Springer Nature, Cham, 2019).
  15. S. T. Paik, Is the mean free path the mean of a distribution?, Am. J. Phys. 82, 602 (2014).
  16. Note that the meaning of f⁢(𝐯)𝑓𝐯f(\mathbf{v})italic_f ( bold_v ) here differs from that in Ref [6]: f⁢(𝐯)𝑓𝐯f(\mathbf{v})italic_f ( bold_v ) is what is called f1⁢(𝐯)/n1subscript𝑓1𝐯subscript𝑛1f_{1}(\mathbf{v})/n_{1}italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( bold_v ) / italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT in Ref [6], n1subscript𝑛1n_{1}italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT being the number density of molecule 1.
  17. P. Visco, F. van Wijland, and E. Trizac, Collisional statistics of the hard-sphere gas, Phys. Rev. E 77, 041117 (2008).
  18. Be aware that this function E𝐸Eitalic_E is not the function with this name in [1] (see Eq. 5.4.9 there). The E𝐸Eitalic_E function in [1] is y𝑦yitalic_y times the function E𝐸Eitalic_E defined here.
  19. A. Santos, S. B. Yuste, and M. López de Haro, Structural and thermodynamic properties of hard-sphere fluids, J. Chem. Phys. 153, 120901 (2020).
  20. G. A. Bird, Approach to translational equilibrium in a rigid sphere gas, Phys. Fluids 6, 1518 (1963).
  21. G. A. Bird, Direct simulation and the Boltzmann equation, Phys. Fluids 13, 2676 (1970).
  22. T. Pöschel and T. Schwager, Computational Granular Dynamics: Models and Algorithms (Springer Science & Business Media, 2005).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.