Insights from Single-File Diffusion into Cooperativity in Higher Dimensions (1507.05714v2)
Abstract: Diffusion in colloidal suspensions can be very slow due to the cage effect, which confines each particle within a short radius on one hand, and involves large-scale cooperative motions on the other. In search of insight into this cooperativity, here the authors develop a formalism to calculate the displacement correlation in colloidal systems, mainly in the two-dimensional case. To clarify the idea for it, studies are reviewed on cooperativity among the particles in the one-dimensional case, i.e. the single-file diffusion (SFD). As an improvement over the celebrated formula by Alexander and Pincus on the mean-square displacement (MSD) in SFD, it is shown that the displacement correlation in SFD can be calculated from Lagrangian correlation of the particle interval in the one-dimensional case, and also that the formula can be extended to higher dimensions. The improved formula becomes exact for large systems. By combining the formula with a nonlinear theory for correlation, a correction to the asymptotic law for the MSD in SFD is obtained. In the two-dimensional case, the linear theory gives description of vortical cooperative motion.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.