Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Transfer Learning under Covariate Shift: Local $k$-Nearest Neighbours Regression with Heavy-Tailed Design (2401.11554v1)

Published 21 Jan 2024 in math.ST and stat.TH

Abstract: Covariate shift is a common transfer learning scenario where the marginal distributions of input variables vary between source and target data while the conditional distribution of the output variable remains consistent. The existing notions describing differences between marginal distributions face limitations in handling scenarios with unbounded support, particularly when the target distribution has a heavier tail. To overcome these challenges, we introduce a new concept called density ratio exponent to quantify the relative decay rates of marginal distributions' tails under covariate shift. Furthermore, we propose the local k-nearest neighbour regressor for transfer learning, which adapts the number of nearest neighbours based on the marginal likelihood of each test sample. From a theoretical perspective, convergence rates with and without supervision information on the target domain are established. Those rates indicate that our estimator achieves faster convergence rates when the density ratio exponent satisfies certain conditions, highlighting the benefits of using density estimation for determining different numbers of nearest neighbours for each test sample. Our contributions enhance the understanding and applicability of transfer learning under covariate shift, especially in scenarios with unbounded support and heavy-tailed distributions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.