Papers
Topics
Authors
Recent
2000 character limit reached

Deep Learning-Based Adaptive Joint Source-Channel Coding using Hypernetworks

Published 20 Jan 2024 in cs.IT and math.IT | (2401.11155v1)

Abstract: Deep learning-based joint source-channel coding (DJSCC) is expected to be a key technique for {the} next-generation wireless networks. However, the existing DJSCC schemes still face the challenge of channel adaptability as they are typically trained under specific channel conditions. In this paper, we propose a generic framework for channel-adaptive DJSCC by utilizing hypernetworks. To tailor the hypernetwork-based framework for communication systems, we propose a memory-efficient hypernetwork parameterization and then develop a channel-adaptive DJSCC network, named Hyper-AJSCC. Compared with existing adaptive DJSCC based on the attention mechanism, Hyper-AJSCC introduces much fewer parameters and can be seamlessly combined with various existing DJSCC networks without any substantial modifications to their neural network architecture. Extensive experiments demonstrate the better adaptability to channel conditions and higher memory efficiency of Hyper-AJSCC compared with state-of-the-art baselines.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The roadmap to 6G: AI empowered wireless networks,” IEEE Commun. Mag., vol. 57, no. 8, pp. 84–90, 2019.
  2. H. He, C.-K. Wen, S. Jin, and G. Y. Li, “Model-driven deep learning for MIMO detection,” IEEE Trans. Signal Process., vol. 68, pp. 1702–1715, 2020.
  3. W. Yu, Y. Shen, H. He, X. Yu, S. Song, J. Zhang, and K. B. Letaief, “An adaptive and robust deep learning framework for thz ultra-massive mimo channel estimation,” IEEE J. Sel. Topics Signal Process., vol. 17, no. 4, pp. 761–776, 2023.
  4. H. He, X. Yu, J. Zhang, S. Song, and K. B. Letaief, “Message passing meets graph neural networks: A new paradigm for massive mimo systems,” IEEE Trans. Wireless Commun., to appear, 2023.
  5. E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint source-channel coding for wireless image transmission,” IEEE Trans. Cogn. Commun. Netw., vol. 5, no. 3, pp. 567–579, 2019.
  6. D. B. Kurka and D. Gündüz, “Deepjscc-f: Deep joint source-channel coding of images with feedback,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 1, pp. 178–193, 2020.
  7. H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” IEEE Trans. Signal Process., vol. 69, pp. 2663–2675, 2021.
  8. J. Dai, S. Wang, K. Tan, Z. Si, X. Qin, K. Niu, and P. Zhang, “Nonlinear transform source-channel coding for semantic communications,” IEEE J. Sel. Areas Commun., vol. 40, no. 8, pp. 2300–2316, 2022.
  9. J. Shao, Y. Mao, and J. Zhang, “Learning task-oriented communication for edge inference: An information bottleneck approach,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 197–211, 2021.
  10. S. Xie, S. Ma, M. Ding, Y. Shi, M. Tang, and Y. Wu, “Robust information bottleneck for task-oriented communication with digital modulation,” IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2577–2591, 2023.
  11. Y. Shi, Y. Zhou, D. Wen, Y. Wu, C. Jiang, and K. B. Letaief, “Task-oriented communications for 6g: Vision, principles, and technologies,” IEEE Wireless Commun., vol. 30, no. 3, pp. 78–85, 2023.
  12. H. Li, W. Yu, H. He, J. Shao, S. Song, J. Zhang, and K. B. Letaief, “Task-oriented communication with out-of-distribution detection: An information bottleneck framework,” arXiv preprint arXiv:2305.12423, 2023.
  13. J. Xu, B. Ai, W. Chen, A. Yang, P. Sun, and M. Rodrigues, “Wireless image transmission using deep source channel coding with attention modules,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 4, pp. 2315–2328, 2021.
  14. M. Yang and H.-S. Kim, “Deep joint source-channel coding for wireless image transmission with adaptive rate control,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), 2022, pp. 5193–5197.
  15. H. Wu, Y. Shao, K. Mikolajczyk, and D. Gündüz, “Channel-adaptive wireless image transmission with OFDM,” IEEE Wirel. Commun. Lett., vol. 11, no. 11, pp. 2400–2404, 2022.
  16. H. Wu, Y. Shao, C. Bian, K. Mikolajczyk, and D. Gündüz, “Vision transformer for adaptive image transmission over MIMO channels,” arXiv preprint arXiv:2210.15347, 2022.
  17. D. Ha, A. M. Dai, and Q. V. Le, “Hypernetworks,” in Proc. Int. Conf. Learn. Representations, 2017, pp. 1–18.
  18. J. Bae, M. R. Zhang, M. Ruan, E. Wang, S. Hasegawa, J. Ba, and R. Grosse, “Multi-rate vae: Train once, get the full rate-distortion curve,” in Proc. Int. Conf. Learn. Representations, 2022, pp. 1–14.
  19. A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,” University of Toronto, Toronto, Ontario, Tech. Rep. 0, 2009.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.