Joint Source-Channel Coding for Channel-Adaptive Digital Semantic Communications (2311.08146v2)
Abstract: In this paper, we propose a novel joint source-channel coding (JSCC) approach for channel-adaptive digital semantic communications. In semantic communication systems with digital modulation and demodulation, robust design of JSCC encoder and decoder becomes challenging not only due to the unpredictable dynamics of channel conditions but also due to diverse modulation orders. To address this challenge, we first develop a new demodulation method which assesses the uncertainty of the demodulation output to improve the robustness of the digital semantic communication system. We then devise a robust training strategy which enhances the robustness and flexibility of the JSCC encoder and decoder against diverse channel conditions and modulation orders. To this end, we model the relationship between the encoder's output and decoder's input using binary symmetric erasure channels and then sample the parameters of these channels from diverse distributions. We also develop a channel-adaptive modulation technique for an inference phase, in order to reduce the communication latency while maintaining task performance. In this technique, we adaptively determine modulation orders for the latent variables based on channel conditions. Using simulations, we demonstrate the superior performance of the proposed JSCC approach for image classification, reconstruction, and retrieval tasks compared to existing JSCC approaches.
- X. Luo, H.-H. Chen, and Q. Guo, “Semantic communications: Overview, open issues, and future research directions,” IEEE Wireless Commun., vol. 29, no. 1, pp. 210–219, Feb. 2022.
- K. Niu, J. Dai, S. Yao, S. Wang, Z. Si, X. Qin, and P. Zhang, “A paradigm shift toward semantic communications,” IEEE Commun. Mag., vol. 60, no. 11, pp. 113–119, Nov. 2022.
- G. Zhang, Q. Hu, Z. Qin, Y. Cai, and G. Yu, “A unified multi-task semantic communication system with domain adaptation,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Rio de Janeiro, Brazil, Dec. 2022, pp. 3971–3976.
- E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint source-channel coding for wireless image transmission,” IEEE Trans. Cogn. Commun. Netw., vol. 5, no. 3, pp. 567–579, Sep. 2019.
- D. B. Kurka and D. Gündüz, “DeepJSCC-f: Deep joint source-channel coding of images with feedback,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 1, pp. 178–193, May 2020.
- M. Wang, Z. Zhang, J. Li, M. Ma, and X. Fan, “Deep joint source-channel coding for multi-task network,” IEEE Trans. Signal Process. Lett., vol. 28, pp. 1973–1977, Sep. 2021.
- H. Wu, Y. Shao, C. Bian, K. Mikolajczyk, and D. Gündüz, “Deep joint source-channel coding for adaptive image transmission over MIMO channels,” 2024, arXiv:2309.00470v2.
- D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K. Wong, and C.-B. Chae, “Beyond transmitting bits: Context, semantics, and task-oriented communications,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 5–41, Jan. 2023.
- J. Kang, H. Du, Z. Li, Z. Xiong, S. Ma, D. Niyato, and Y. Li, “Personalized saliency in task-oriented semantic communications: Image transmission and performance analysis,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 186–201, Jan. 2023.
- G. Zhang, Q. Hu, Y. Cai, and G. Yu, “Adaptive CSI feedback for deep learning-enabled image transmission,” 2023, arXiv:2302.13477.
- E. Erdemir, T.-Y. Tung, P. L. Dragotti, and D. Gündüz, “Generative joint source-channel coding for semantic image transmission,” IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2645–2657, Aug. 2023.
- D. B. Kurka and D. Gündüz, “Bandwidth-agile image transmission with deep joint source-channel coding,” IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 8081–8095, Dec. 2021.
- N. Farsad, M. Rao, and A. Goldsmith, “Deep learning for joint source-channel coding of text,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Calgary, AB, Canada, Apr. 2018, pp. 2326–2330.
- H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” IEEE Trans. Signal Process., vol. 69, pp. 2663–2675, Apr. 2021.
- L. Yan, Z. Qin, R. Zhang, Y. Li, and G. Y. Li, “Resource allocation for text semantic communications,” IEEE Wireless Commun. Lett., vol. 11, no. 7, pp. 1394–1398, Jul. 2022.
- Z. Weng and Z. Qin, “Semantic communication systems for speech transmission,” IEEE J. Sel. Areas Commun., vol. 39, no. 8, pp. 2434–2444, Aug. 2021.
- T.-Y. Tung and D. Gündüz, “DeepWiVe: Deep-learning-aided wireless video transmission,” IEEE J. Sel. Areas Commun., vol. 40, no. 9, pp. 2570–2583, Sep. 2022.
- L. P. Kondi and A. K. Katsaggelos, “Joint source-channel coding for scalable video using models of rate-distortion functions,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Salt Lake City, UT, USA, May 2001, pp. 1377–1380.
- J. Xu, B. Ai, W. Chen, A. Yang, P. Sun, and M. Rodrigues, “Wireless image transmission using deep source channel coding with attention modules,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 4, pp. 2315–2328, Apr. 2022.
- H. Wu, Y. Shao, K. Mikolajczyk, and D. Gündüz, “Channel-adaptive wireless image transmission with OFDM,” IEEE Wireless Commun. Lett., vol. 11, no. 11, pp. 2400–2404, Nov. 2022.
- M. Yang, C. Bian, and H.-S. Kim, “OFDM-guided deep joint source channel coding for wireless multipath fading channels,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 2, pp. 584–599, Jun. 2022.
- M. Yang and H.-S. Kim, “Deep joint source-channel coding for wireless image transmission with adaptive rate control,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Singapore, Singapore, May 2022, pp. 5193–5197.
- J. Shao, Y. Mao, and J. Zhang, “Learning task-oriented communication for edge inference: An information bottleneck approach,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 197–211, Jan. 2022.
- D. Huang, F. Gao, X. Tao, Q. Du, and J. Lu, “Toward semantic communications: Deep learning-based image semantic coding,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 55–71, Jan. 2023.
- L. Guo, W. Chen, Y. Sun, and B. Ai, “Digital-SC: Digital semantic communication with adaptive network split and learned non-linear quantization,” 2024, arXiv:2305.13553.
- Y. Bo, Y. Duan, S. Shao, and M. Tao, “Learning based joint coding-modulation for digital semantic communication systems,” in Proc. IEEE Int. Conf. Wireless Commun. Signal Process. (WCSP), Nanjing, China, Nov. 2022, pp. 361–366.
- T.-Y. Tung, D. B. Kurka, M. Jankowski, and D. Gündüz, “DeepJSCC-Q: Constellation constrained deep joint source-channel coding,” IEEE J. Sel. Areas Inf. Theory, vol. 3, no. 4, pp. 720–731, Dec. 2022.
- Q. Fu, H. Xie, Z. Qin, G. Slabaugh, and X. Tao, “Vector quantized semantic communication system,” IEEE Commun. Lett., vol. 12, no. 6, pp. 982–986, Mar. 2023.
- Q. Hu, G. Zhang, Z. Qin, Y. Cai, G. Yu, and G. Y. Li, “Robust semantic communications with masked VQ-VAE enabled codebook,” IEEE Trans. Wireless Commun., vol. 22, no. 12, pp. 8707–8722, Apr. 2023.
- S. Xie, S. Ma, M. Ding, Y. Shi, M. Tang, and Y. Wu, “Robust information bottleneck for task-oriented communication with digital modulation,” IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2577–2591, Aug. 2023.
- H. Gao, G. Yu, and Y. Cai, “Adaptive modulation and retransmission scheme for semantic communication systems,” IEEE Trans. Cogn. Commun. Netw., vol. 10, no. 1, pp. 150–163, Feb. 2024.
- K. Choi, K. Tatwawadi, A. Grover, T. Weissman, and S. Ermon, “Neural joint source-channel coding,” in Proc. Int. Conf. Mach. Learn. (ICML), Long Beach, CA, USA, Jun. 2019, pp. 1182–1192.
- Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998.
- H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms,” 2017, arXiv:1708.07747.
- A. Krizhevsky, “Learning multiple layers of features from tiny images,” M.S. thesis, Univ. Toronto, Toronto, ON, Canada, 2009.
- J. Park, Y. Oh, S. Kim, and Y.-S. Jeon, “Joint source-channel coding and channel-adaptive modulation for digital semantic communications,” submitted to IEEE Int. Conf. Commun. Workshops (ICC Workshops).
- Y. Song, M. Xu, L. Yu, H. Zhou, S. Shao, and Y. Yu, “Infomax neural joint source-channel coding via adversarial bit flip,” AAAI, vol. 34, no. 4, pp. 5834–5841, Apr. 2020.
- M. Boudiaf, J. Rony, I. M. Ziko, E. Granger, M. Pedersoli, P. Piantanida, and I. B. Ayed, “A unifying mutual information view of metric learning: Cross-entropy vs. pairwise losses,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Glasgow, United Kingdom, Sep. 2021, pp. 548–564.
- H. Soury, F. Yilmaz, and M.-S. Alouini, “Error rates of M-PAM and M-QAM in generalized fading and generalized Gaussian noise environments,” IEEE Commun. Lett., vol. 17, no. 10, pp. 1932–1935, Oct. 2013.
- D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017, arXiv:1412.6980.
- C. Lee, X. Hu, and H.-S. Kim, “Deep joint source-channel coding with iterative source error correction,” in Proc. Int. Conf. Artif. Intell. Statist. (AISTATS), Palau de Congressos, Valencia, Spain, Apr. 2023, pp. 3879–3902.
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2015, arXiv:1512.03385.
- A. M. Tulino, G. Caire, S. Shamai, and S. Verdu, “Capacity of channels with frequency-selective and time-selective fading,” IEEE Trans. Inf. Theory, vol. 56, no. 3, pp. 1187–1215, Mar. 2010.
- A. Conti, M. Z. Win, and M. Chiani, “Slow adaptive M-QAM with diversity in fast fading and shadowing,” IEEE Trans. Commun., vol. 55, no. 5, pp. 895–905, May 2007.
- Joohyuk Park (4 papers)
- Yongjeong Oh (11 papers)
- Seonjung Kim (3 papers)
- Yo-Seb Jeon (29 papers)