Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

A Comparative Analysis on Metaheuristic Algorithms Based Vision Transformer Model for Early Detection of Alzheimer's Disease (2401.09795v1)

Published 18 Jan 2024 in cs.NE and cs.AI

Abstract: A number of life threatening neuro-degenerative disorders had degraded the quality of life for the older generation in particular. Dementia is one such symptom which may lead to a severe condition called Alzheimer's disease if not detected at an early stage. It has been reported that the progression of such disease from a normal stage is due to the change in several parameters inside the human brain. In this paper, an innovative metaheuristic algorithms based ViT model has been proposed for the identification of dementia at different stage. A sizeable number of test data have been utilized for the validation of the proposed scheme. It has also been demonstrated that our model exhibits superior performance in terms of accuracy, precision, recall as well as F1-score.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. S. Gauthier, P. Rosa-Neto, J. A. Morais, and C. Webster, “World alzheimer report 2021: Journey through the diagnosis of dementia,” Alzheimer’s Disease International, vol. 2022, p. 30, 2021.
  2. S. Roy and A. Chandra, “On the detection of alzheimer’s disease using fuzzy logic based majority voter classifier,” Multimedia Tools and Applications, vol. 81, no. 30, pp. 43145–43161, 2022.
  3. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  4. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  5. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255, Ieee, 2009.
  6. R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces,” Journal of global optimization, vol. 11, pp. 341–359, 1997.
  7. J. H. Holland, “Genetic algorithms and adaptation,” Adaptive control of ill-defined systems, pp. 317–333, 1984.
  8. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95-international conference on neural networks, vol. 4, pp. 1942–1948, IEEE, 1995.
  9. A. Mazumder, A. Sen, and U. Sen, “Benchmarking metaheuristic-integrated quantum approximate optimisation algorithm against quantum annealing for quadratic unconstrained binary optimization problems,” arXiv preprint arXiv:2309.16796, 2023.
  10. S. M. LaValle, M. S. Branicky, and S. R. Lindemann, “On the relationship between classical grid search and probabilistic roadmaps,” The International Journal of Robotics Research, vol. 23, no. 7-8, pp. 673–692, 2004.
  11. J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.,” Journal of machine learning research, vol. 13, no. 2, 2012.
  12. J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine learning algorithms,” Advances in neural information processing systems, vol. 25, 2012.
  13. T.-S. Cao, T.-T.-T. Nguyen, V.-S. Nguyen, V.-H. Truong, and H.-H. Nguyen, “Performance of six metaheuristic algorithms for multi-objective optimization of nonlinear inelastic steel trusses,” Buildings, vol. 13, no. 4, p. 868, 2023.
  14. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.
  15. J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint arXiv:1607.06450, 2016.
  16. P. A. Yushkevich, J. Piven, H. Cody Hazlett, R. Gimpel Smith, S. Ho, J. C. Gee, and G. Gerig, “User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability,” Neuroimage, vol. 31, no. 3, pp. 1116–1128, 2006.
  17. S. Korolev, A. Safiullin, M. Belyaev, and Y. Dodonova, “Residual and plain convolutional neural networks for 3d brain mri classification,” in 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017), pp. 835–838, IEEE, 2017.
  18. Y. Huang, J. Xu, Y. Zhou, T. Tong, X. Zhuang, and A. D. N. I. (ADNI), “Diagnosis of alzheimer’s disease via multi-modality 3d convolutional neural network,” Frontiers in neuroscience, vol. 13, p. 509, 2019.
  19. H. Shin, S. Jeon, Y. Seol, S. Kim, and D. Kang, “Vision transformer approach for classification of alzheimer’s disease using 18f-florbetaben brain images,” Applied Sciences, vol. 13, no. 6, p. 3453, 2023.
  20. P. Sherwani, P. Nandhakumar, P. Srivastava, J. Jagtap, V. Narvekar, and R. Harikrishnan, “Comparative analysis of alzheimer’s disease detection via mri scans using convolutional neural network and vision transformer,” in 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), pp. 1–9, IEEE, 2023.
  21. Y. Lyu, X. Yu, D. Zhu, and L. Zhang, “Classification of alzheimer’s disease via vision transformer: Classification of alzheimer’s disease via vision transformer,” in Proceedings of the 15th International Conference on PErvasive Technologies Related to Assistive Environments, pp. 463–468, 2022.
  22. R. Kushol, A. Masoumzadeh, D. Huo, S. Kalra, and Y.-H. Yang, “Addformer: Alzheimer’s disease detection from structural mri using fusion transformer,” in 2022 IEEE 19th International Symposium On Biomedical Imaging (ISBI), pp. 1–5, IEEE, 2022.
  23. Z. Hu, Z. Wang, Y. Jin, and W. Hou, “Vgg-tswinformer: Transformer-based deep learning model for early alzheimer’s disease prediction,” Computer Methods and Programs in Biomedicine, vol. 229, p. 107291, 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.