Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

The diagrammatic presentation of equations in categories (2401.09751v2)

Published 18 Jan 2024 in math.CT

Abstract: Lifts of categorical diagrams $D\colon\mathsf{J}\to\mathsf{X}$ against discrete opfibrations $\pi\colon\mathsf{E}\to\mathsf{X}$ can be interpreted as presenting solutions to systems of equations. With this interpretation in mind, it is natural to ask if there is a notion of equivalence of diagrams $D\simeq D'$ that precisely captures the idea of the two diagrams "having the same solutions''. We give such a definition, and then show how the localisation of the category of diagrams in $\mathsf{X}$ along such equivalences is isomorphic to the localisation of the slice category $\mathsf{Cat}/\mathsf{X}$ along the class of initial functors. Finally, we extend this result to the 2-categorical setting, proving the analogous statement for any locally presentable 2-category in place of $\mathsf{Cat}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. R. Blackwell, G.M. Kelly and A.J. Power “Two-dimensional monad theory” In Journal of Pure and Applied Algebra 59.1, 1989, pp. 1–41 DOI: https://doi.org/10.1016/0022-4049(89)90160-6
  2. John Bourke, Stephen Lack and Lukáš Vokřínek “Adjoint functor theorems for homotopically enriched categories” In Advances in Mathematics 412, 2023, pp. 108812 DOI: https://doi.org/10.1016/j.aim.2022.108812
  3. Samuel Eilenberg and Saunders Mac Lane “General theory of natural equivalences” In Transactions of the American Mathematical Society 58, 1945, pp. 231–294 DOI: 10.1090/S0002-9947-1945-0013131-6
  4. René Guitart and Luc Van den Bril “Décompositions et Lax-complétions” In Cahiers de topologie et géométrie différentielle 18.4 Dunod éditeur, publié avec le concours du CNRS, 1977, pp. 333–407 URL: http://www.numdam.org/item/CTGDC_1977__18_4_333_0/
  5. “Calculus of fractions and homotopy theory” Springer, 1967 DOI: 10.1007/978-3-642-85844-4
  6. Luca Mesiti “Colimits in 2-dimensional slices”, 2023 arXiv:2305.01494 [math.CT]
  7. “A diagrammatic view of differential equations in physics” In Mathematics in Engineering 5.2, 2022, pp. 1–59 DOI: 10.3934/mine.2023036
  8. Emily Riehl “Categorical homotopy theory” Cambridge University Press, 2014 DOI: 10.1017/CBO9781107261457
  9. “Elements of ∞\infty∞-category theory” Cambridge University Press, 2022 DOI: 10.1017/9781108936880
  10. David I. Spivak “Functorial aggregation”, 2023 arXiv:2111.10968 [math.CT]
  11. “The comprehensive factorization of a functor” In Bulletin of the American Mathematical Society 79, 1973, pp. 936–941 DOI: 10.1090/S0002-9904-1973-13268-9

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 28 likes.

Upgrade to Pro to view all of the tweets about this paper: