The diagrammatic presentation of equations in categories (2401.09751v2)
Abstract: Lifts of categorical diagrams $D\colon\mathsf{J}\to\mathsf{X}$ against discrete opfibrations $\pi\colon\mathsf{E}\to\mathsf{X}$ can be interpreted as presenting solutions to systems of equations. With this interpretation in mind, it is natural to ask if there is a notion of equivalence of diagrams $D\simeq D'$ that precisely captures the idea of the two diagrams "having the same solutions''. We give such a definition, and then show how the localisation of the category of diagrams in $\mathsf{X}$ along such equivalences is isomorphic to the localisation of the slice category $\mathsf{Cat}/\mathsf{X}$ along the class of initial functors. Finally, we extend this result to the 2-categorical setting, proving the analogous statement for any locally presentable 2-category in place of $\mathsf{Cat}$.
- R. Blackwell, G.M. Kelly and A.J. Power “Two-dimensional monad theory” In Journal of Pure and Applied Algebra 59.1, 1989, pp. 1–41 DOI: https://doi.org/10.1016/0022-4049(89)90160-6
- John Bourke, Stephen Lack and Lukáš Vokřínek “Adjoint functor theorems for homotopically enriched categories” In Advances in Mathematics 412, 2023, pp. 108812 DOI: https://doi.org/10.1016/j.aim.2022.108812
- Samuel Eilenberg and Saunders Mac Lane “General theory of natural equivalences” In Transactions of the American Mathematical Society 58, 1945, pp. 231–294 DOI: 10.1090/S0002-9947-1945-0013131-6
- René Guitart and Luc Van den Bril “Décompositions et Lax-complétions” In Cahiers de topologie et géométrie différentielle 18.4 Dunod éditeur, publié avec le concours du CNRS, 1977, pp. 333–407 URL: http://www.numdam.org/item/CTGDC_1977__18_4_333_0/
- “Calculus of fractions and homotopy theory” Springer, 1967 DOI: 10.1007/978-3-642-85844-4
- Luca Mesiti “Colimits in 2-dimensional slices”, 2023 arXiv:2305.01494 [math.CT]
- “A diagrammatic view of differential equations in physics” In Mathematics in Engineering 5.2, 2022, pp. 1–59 DOI: 10.3934/mine.2023036
- Emily Riehl “Categorical homotopy theory” Cambridge University Press, 2014 DOI: 10.1017/CBO9781107261457
- “Elements of ∞\infty∞-category theory” Cambridge University Press, 2022 DOI: 10.1017/9781108936880
- David I. Spivak “Functorial aggregation”, 2023 arXiv:2111.10968 [math.CT]
- “The comprehensive factorization of a functor” In Bulletin of the American Mathematical Society 79, 1973, pp. 936–941 DOI: 10.1090/S0002-9904-1973-13268-9
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.