Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Novel Approach in Solving Stochastic Generalized Linear Regression via Nonconvex Programming (2401.08488v1)

Published 16 Jan 2024 in stat.ML and math.OC

Abstract: Generalized linear regressions, such as logistic regressions or Poisson regressions, are long-studied regression analysis approaches, and their applications are widely employed in various classification problems. Our study considers a stochastic generalized linear regression model as a stochastic problem with chance constraints and tackles it using nonconvex programming techniques. Clustering techniques and quantile estimation are also used to estimate random data's mean and variance-covariance matrix. Metrics for measuring the performance of logistic regression are used to assess the model's efficacy, including the F1 score, precision score, and recall score. The results of the proposed algorithm were over 1 to 2 percent better than the ordinary logistic regression model on the same dataset with the above assessment criteria.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.