Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster ISNet for Background Bias Mitigation on Deep Neural Networks (2401.08409v2)

Published 16 Jan 2024 in eess.IV, cs.CV, cs.CY, and cs.LG

Abstract: Bias or spurious correlations in image backgrounds can impact neural networks, causing shortcut learning (Clever Hans Effect) and hampering generalization to real-world data. ISNet, a recently introduced architecture, proposed the optimization of Layer-Wise Relevance Propagation (LRP, an explanation technique) heatmaps, to mitigate the influence of backgrounds on deep classifiers. However, ISNet's training time scales linearly with the number of classes in an application. Here, we propose reformulated architectures whose training time becomes independent from this number. Additionally, we introduce a concise and model-agnostic LRP implementation. We challenge the proposed architectures using synthetic background bias, and COVID-19 detection in chest X-rays, an application that commonly presents background bias. The networks hindered background attention and shortcut learning, surpassing multiple state-of-the-art models on out-of-distribution test datasets. Representing a potentially massive training speed improvement over ISNet, the proposed architectures introduce LRP optimization into a gamut of applications that the original model cannot feasibly handle.

Summary

We haven't generated a summary for this paper yet.