Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning on Dynamic Graphs: A Survey on Applications (2401.08147v1)

Published 16 Jan 2024 in cs.LG and cs.SI

Abstract: Dynamic graph learning has gained significant attention as it offers a powerful means to model intricate interactions among entities across various real-world and scientific domains. Notably, graphs serve as effective representations for diverse networks such as transportation, brain, social, and internet networks. Furthermore, the rapid advancements in machine learning have expanded the scope of dynamic graph applications beyond the aforementioned domains. In this paper, we present a review of lesser-explored applications of dynamic graph learning. This study revealed the potential of machine learning on dynamic graphs in addressing challenges across diverse domains, including those with limited levels of association with the field.

Citations (1)

Summary

We haven't generated a summary for this paper yet.