Papers
Topics
Authors
Recent
2000 character limit reached

Analyzing dynamics and average case complexity in the spherical Sherrington-Kirkpatrick model: a focus on extreme eigenvectors

Published 8 Jan 2024 in math.PR, cs.NA, math-ph, math.MP, and math.NA | (2401.03668v1)

Abstract: We explore Langevin dynamics in the spherical Sherrington-Kirkpatrick model, delving into the asymptotic energy limit. Our approach involves integro-differential equations, incorporating the Crisanti-Horner-Sommers-Cugliandolo-Kurchan equation from spin glass literature, to analyze the system's size and its temperature-dependent phase transition. Additionally, we conduct an average case complexity analysis, establishing hitting time bounds for the bottom eigenvector of a Wigner matrix. Our investigation also includes the power iteration algorithm, examining its average case complexity in identifying the top eigenvector overlap, with comprehensive complexity bounds.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55. US Government printing office, 1948.
  2. Aging of spherical spin glasses. Probability theory and related fields, 120(1):1–67, 2001.
  3. A. Auffinger and W.-K. Chen. On the energy landscape of spherical spin glasses. Advances in Mathematics, 330:553–588, 2018.
  4. G. Ben-Arous. Aging and spin-glass dynamics. arXiv preprint math/0304364, 2003.
  5. Numerical analysis, brooks, 1997.
  6. S. Chatterjee. Estimation in spin glasses: A first step. Annals of Statistics, 35(5):1931 – 1946, 2007.
  7. K. L. Chung. A course in probability theory. Academic press, 2001.
  8. A. Crisanti and H.-J. Sommers. The spherical p-spin interaction spin glass model: the statics. Zeitschrift für Physik B Condensed Matter, 87(3):341–354, 1992.
  9. L. F. Cugliandolo and J. Kurchan. Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model. Physical Review Letters, 71(1):173, 1993.
  10. L. F. Cugliandolo and J. Kurchan. On the out-of-equilibrium relaxation of the sherrington-kirkpatrick model. Journal of Physics A: Mathematical and General, 27(17):5749, 1994.
  11. P. Deift and T. Trogdon. Universality for eigenvalue algorithms on sample covariance matrices. SIAM Journal on Numerical Analysis, 55(6):2835–2862, 2017.
  12. A. Dembo and R. Gheissari. Diffusions interacting through a random matrix: universality via stochastic taylor expansion. Probability Theory and Related Fields, 180:1057–1097, 2021.
  13. A. Dembo and E. Subag. Dynamics for spherical spin glasses: disorder dependent initial conditions. Journal of Statistical Physics, 181:465–514, 2020.
  14. Message-passing algorithms for compressed sensing. Proceedings of the National Academy of Sciences, 106(45):18914–18919, 2009.
  15. R. Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.
  16. Theory of spin glasses. Journal of Physics F: Metal Physics, 5(5):965, 1975.
  17. H.-O. Georgii. Gibbs measures and phase transitions, volume 9. Walter de Gruyter, 2011.
  18. The random geometry of equilibrium phases. In Phase transitions and critical phenomena, volume 18, pages 1–142. Elsevier, 2001.
  19. E. Kostlan. Complexity theory of numerical linear algebra. Journal of Computational and Applied Mathematics, 22(2-3):219–230, 1988.
  20. E. Kostlan. Statistical complexity of dominant eigenvector calculation. Journal of Complexity, 7(4):371–379, 1991.
  21. B. Landon. Free energy fluctuations of the two-spin spherical sk model at critical temperature. Journal of Mathematical Physics, 63(3):033301, 2022.
  22. J. O. Lee and J. Yin. A necessary and sufficient condition for edge universality of wigner matrices. Duke Mathematical Journal, 163(1):117–173, 2014.
  23. High-dimensional asymptotics of Langevin dynamics in spiked matrix models. Information and Inference: A Journal of the IMA, 12(4):2720–2752, 10 2023.
  24. B. Øksendal. Stochastic differential equations. In Stochastic differential equations, pages 65–84. Springer, 2003.
  25. D. Sherrington and S. Kirkpatrick. Solvable model of a spin-glass. Physical review letters, 35(26):1792, 1975.
  26. S. Smale. Complexity theory and numerical analysis. Acta numerica, 6:523–551, 1997.
  27. Spin glasses and complexity, volume 4. Princeton University Press, 2013.
  28. T. Tao and V. Vu. Random matrices: universal properties of eigenvectors. Random Matrices: Theory and Applications, 1(01):1150001, 2012.
  29. C. A. Tracy and H. Widom. Level-spacing distributions and the airy kernel. Communications in Mathematical Physics, 159:151–174, 1994.
  30. C. A. Tracy and H. Widom. On orthogonal and symplectic matrix ensembles. Communications in Mathematical Physics, 177:727–754, 1996.
  31. Slow dynamics and aging in spin glasses. In Complex Behaviour of Glassy Systems: Proceedings of the XIV Sitges Conference Sitges, Barcelona, Spain, 10–14 June 1996, pages 184–219. Springer, 2007.
  32. L. Zdeborová and F. Krzakala. Statistical physics of inference: Thresholds and algorithms. Advances in Physics, 65(5):453–552, 2016.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.