Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical mechanics of the maximum-average submatrix problem (2303.05237v2)

Published 9 Mar 2023 in cond-mat.dis-nn, cs.IT, and math.IT

Abstract: We study the maximum-average submatrix problem, in which given an $N \times N$ matrix $J$ one needs to find the $k \times k$ submatrix with the largest average of entries. We study the problem for random matrices $J$ whose entries are i.i.d. random variables by mapping it to a variant of the Sherrington-Kirkpatrick spin-glass model at fixed magnetization. We characterize analytically the phase diagram of the model as a function of the submatrix average and the size of the submatrix $k$ in the limit $N\to\infty$. We consider submatrices of size $k = m N$ with $0 < m < 1$. We find a rich phase diagram, including dynamical, static one-step replica symmetry breaking and full-step replica symmetry breaking. In the limit of $m \to 0$, we find a simpler phase diagram featuring a frozen 1-RSB phase, where the Gibbs measure is composed of exponentially many pure states each with zero entropy. We discover an interesting phenomenon, reminiscent of the phenomenology of the binary perceptron: there exist efficient algorithms that provably work in the frozen 1-RSB phase.

Citations (4)

Summary

We haven't generated a summary for this paper yet.