Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 Pro
2000 character limit reached

An Inexact Preconditioned Zeroth-order Proximal Method for Composite Optimization (2401.03565v1)

Published 7 Jan 2024 in math.OC

Abstract: In this paper, we consider the composite optimization problem, where the objective function integrates a continuously differentiable loss function with a nonsmooth regularization term. Moreover, only the function values for the differentiable part of the objective function are available. To efficiently solve this composite optimization problem, we propose a preconditioned zeroth-order proximal gradient method in which the gradients and preconditioners are estimated by finite-difference schemes based on the function values at the same trial points. We establish the global convergence and worst-case complexity for our proposed method. Numerical experiments exhibit the superiority of our developed method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. Powell, M.J.: Developments of NEWUOA for minimization without derivatives. IMA Journal of Numerical Analysis 28(4), 649–664 (2008) Conn et al. [2009] Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-free Optimization. SIAM, Philadelphia (2009) Zhang [2012] Zhang, Z.: On derivative-free optimization methods. PhD Thesis, Graduate School of Chinese Academy of Sciences, University of Chinese Academy of Sciences (2012) Grapiglia et al. [2016] Grapiglia, G.N., Yuan, J., Yuan, Y.-X.: A derivative-free trust-region algorithm for composite nonsmooth optimization. Computational and Applied Mathematics 35, 475–499 (2016) Larson et al. [2019] Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019) Ciccazzo et al. [2015] Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-free Optimization. SIAM, Philadelphia (2009) Zhang [2012] Zhang, Z.: On derivative-free optimization methods. PhD Thesis, Graduate School of Chinese Academy of Sciences, University of Chinese Academy of Sciences (2012) Grapiglia et al. [2016] Grapiglia, G.N., Yuan, J., Yuan, Y.-X.: A derivative-free trust-region algorithm for composite nonsmooth optimization. Computational and Applied Mathematics 35, 475–499 (2016) Larson et al. [2019] Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019) Ciccazzo et al. [2015] Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Zhang, Z.: On derivative-free optimization methods. PhD Thesis, Graduate School of Chinese Academy of Sciences, University of Chinese Academy of Sciences (2012) Grapiglia et al. [2016] Grapiglia, G.N., Yuan, J., Yuan, Y.-X.: A derivative-free trust-region algorithm for composite nonsmooth optimization. Computational and Applied Mathematics 35, 475–499 (2016) Larson et al. [2019] Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019) Ciccazzo et al. [2015] Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Grapiglia, G.N., Yuan, J., Yuan, Y.-X.: A derivative-free trust-region algorithm for composite nonsmooth optimization. Computational and Applied Mathematics 35, 475–499 (2016) Larson et al. [2019] Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019) Ciccazzo et al. [2015] Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019) Ciccazzo et al. [2015] Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  2. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-free Optimization. SIAM, Philadelphia (2009) Zhang [2012] Zhang, Z.: On derivative-free optimization methods. PhD Thesis, Graduate School of Chinese Academy of Sciences, University of Chinese Academy of Sciences (2012) Grapiglia et al. [2016] Grapiglia, G.N., Yuan, J., Yuan, Y.-X.: A derivative-free trust-region algorithm for composite nonsmooth optimization. Computational and Applied Mathematics 35, 475–499 (2016) Larson et al. [2019] Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019) Ciccazzo et al. [2015] Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Zhang, Z.: On derivative-free optimization methods. PhD Thesis, Graduate School of Chinese Academy of Sciences, University of Chinese Academy of Sciences (2012) Grapiglia et al. [2016] Grapiglia, G.N., Yuan, J., Yuan, Y.-X.: A derivative-free trust-region algorithm for composite nonsmooth optimization. Computational and Applied Mathematics 35, 475–499 (2016) Larson et al. [2019] Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019) Ciccazzo et al. [2015] Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Grapiglia, G.N., Yuan, J., Yuan, Y.-X.: A derivative-free trust-region algorithm for composite nonsmooth optimization. Computational and Applied Mathematics 35, 475–499 (2016) Larson et al. [2019] Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019) Ciccazzo et al. [2015] Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019) Ciccazzo et al. [2015] Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  3. Zhang, Z.: On derivative-free optimization methods. PhD Thesis, Graduate School of Chinese Academy of Sciences, University of Chinese Academy of Sciences (2012) Grapiglia et al. [2016] Grapiglia, G.N., Yuan, J., Yuan, Y.-X.: A derivative-free trust-region algorithm for composite nonsmooth optimization. Computational and Applied Mathematics 35, 475–499 (2016) Larson et al. [2019] Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019) Ciccazzo et al. [2015] Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Grapiglia, G.N., Yuan, J., Yuan, Y.-X.: A derivative-free trust-region algorithm for composite nonsmooth optimization. Computational and Applied Mathematics 35, 475–499 (2016) Larson et al. [2019] Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019) Ciccazzo et al. [2015] Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019) Ciccazzo et al. [2015] Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  4. Grapiglia, G.N., Yuan, J., Yuan, Y.-X.: A derivative-free trust-region algorithm for composite nonsmooth optimization. Computational and Applied Mathematics 35, 475–499 (2016) Larson et al. [2019] Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019) Ciccazzo et al. [2015] Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019) Ciccazzo et al. [2015] Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  5. Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numerica 28, 287–404 (2019) Ciccazzo et al. [2015] Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  6. Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. Journal of Optimization Theory and Applications 164, 842–861 (2015) Taskar et al. [2005] Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  7. Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured prediction models: A large margin approach. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 896–903 (2005) Wild et al. [2015] Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  8. Wild, S.M., Sarich, J., Schunck, N.: Derivative-free optimization for parameter estimation in computational nuclear physics. Journal of Physics G: Nuclear and Particle Physics 42(3), 034031 (2015) Shamir [2017] Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  9. Shamir, O.: An optimal algorithm for bandit and zero-order convex optimization with two-point feedback. Journal of Machine Learning Research 18(1), 1703–1713 (2017) Nakamura et al. [2017] Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  10. Nakamura, N., Seepaul, J., Kadane, J.B., Reeja-Jayan, B.: Design for low-temperature microwave-assisted crystallization of ceramic thin films. Applied Stochastic Models in Business and Industry 33(3), 314–321 (2017) Papernot et al. [2017] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  11. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017) Snoek et al. [2012] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  12. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems 25 (2012) Ragonneau and Zhang [2023] Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  13. Ragonneau, T.M., Zhang, Z.: PDFO: A cross-platform package for Powell’s derivative-free optimization solver. arXiv:2302.13246 (2023) Mine and Fukushima [1981] Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  14. Mine, H., Fukushima, M.: A minimization method for the sum of a convex function and a continuously differentiable function. Journal of Optimization Theory and Applications 33, 9–23 (1981) Ghadimi et al. [2016] Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  15. Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Mathematical Programming 155(1-2), 267–305 (2016) Nesterov and Spokoiny [2017] Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  16. Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Foundations of Computational Mathematics 17, 527–566 (2017) Gu et al. [2018] Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  17. Gu, B., Huo, Z., Deng, C., Huang, H.: Faster derivative-free stochastic algorithm for shared memory machines. In: International Conference on Machine Learning, pp. 1812–1821 (2018). PMLR Huang et al. [2019] Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  18. Huang, F., Gu, B., Huo, Z., Chen, S., Huang, H.: Faster gradient-free proximal stochastic methods for nonconvex nonsmooth optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1503–1510 (2019) Kalogerias and Powell [2022] Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  19. Kalogerias, D.S., Powell, W.B.: Zeroth-order stochastic compositional algorithms for risk-aware learning. SIAM Journal on Optimization 32(2), 386–416 (2022) Balasubramanian and Ghadimi [2022] Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  20. Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics, 1–42 (2022) Ghadimi and Lan [2013] Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  21. Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23(4), 2341–2368 (2013) Kungurtsev and Rinaldi [2021] Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  22. Kungurtsev, V., Rinaldi, F.: A zeroth order method for stochastic weakly convex optimization. Computational Optimization and Applications 80(3), 731–753 (2021) Pougkakiotis and Kalogerias [2022] Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  23. Pougkakiotis, S., Kalogerias, D.S.: A zeroth-order proximal stochastic gradient method for weakly convex stochastic optimization. arXiv:2205.01633 (2022) Cai et al. [2022] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  24. Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization 32(2), 687–714 (2022) Xiao and Zhang [2014] Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  25. Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization 24(4), 2057–2075 (2014) Defazio et al. [2014] Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  26. Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in Neural Information Processing Systems 27 (2014) Doikov and Grapiglia [2023] Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  27. Doikov, N., Grapiglia, G.N.: First and zeroth-order implementations of the regularized Newton method with lazy approximated Hessians. arXiv:2309.02412 (2023) Nesterov and Polyak [2006] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  28. Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical Programming 108(1), 177–205 (2006) Rockafellar [2015] Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  29. Rockafellar, R.T.: Convex Analysis. Princeton University Press, ??? (2015) Davis and Drusvyatskiy [2019] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  30. Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization 29(1), 207–239 (2019) Beck [2017] Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  31. Beck, A.: First-order Methods in Optimization. SIAM, Philadelphia (2017) Xiao et al. [2018] Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  32. Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. Journal of Scientific Computing 76, 364–389 (2018) Li et al. [2018] Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  33. Li, X., Sun, D., Toh, K.-C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28(1), 433–458 (2018) Tibshirani [1996] Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  34. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology 58(1), 267–288 (1996) Xiao et al. [2021] Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  35. Xiao, N., Liu, X., Yuan, Y.-x.: Exact penalty function for ℓ2,1subscriptℓ21\ell_{2,1}roman_ℓ start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT norm minimization over the Stiefel manifold. SIAM Journal on Optimization 31(4), 3097–3126 (2021) Wang et al. [2023] Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023) Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
  36. Wang, L., Liu, X., Zhang, Y.: A communication-efficient and privacy-aware distributed algorithm for sparse PCA. Computational Optimization and Applications 85(3), 1033–1072 (2023)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube