Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inexact proximal DC Newton-type method for nonconvex composite functions (2111.07618v2)

Published 15 Nov 2021 in math.OC

Abstract: We consider a class of difference-of-convex (DC) optimization problems where the objective function is the sum of a smooth function and a possible nonsmooth DC function. The application of proximal DC algorithms to address this problem class is well-known. In this paper, we combine a proximal DC algorithm with an inexact proximal Newton-type method to propose an inexact proximal DC Newton-type method. We demonstrate global convergence properties of the proposed method. In addition, we give a memoryless quasi-Newton matrix for scaled proximal mappings and consider a two-dimensional system of semi-smooth equations that arise in calculating scaled proximal mappings. To efficiently obtain the scaled proximal mappings, we adopt a semi-smooth Newton method to inexactly solve the system. Finally, we present some numerical experiments to investigate the efficiency of the proposed method, showing that the proposed method outperforms existing methods.

Summary

We haven't generated a summary for this paper yet.