Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Enhancing dysarthria speech feature representation with empirical mode decomposition and Walsh-Hadamard transform (2401.00225v1)

Published 30 Dec 2023 in eess.AS, cs.AI, and eess.SP

Abstract: Dysarthria speech contains the pathological characteristics of vocal tract and vocal fold, but so far, they have not yet been included in traditional acoustic feature sets. Moreover, the nonlinearity and non-stationarity of speech have been ignored. In this paper, we propose a feature enhancement algorithm for dysarthria speech called WHFEMD. It combines empirical mode decomposition (EMD) and fast Walsh-Hadamard transform (FWHT) to enhance features. With the proposed algorithm, the fast Fourier transform of the dysarthria speech is first performed and then followed by EMD to get intrinsic mode functions (IMFs). After that, FWHT is used to output new coefficients and to extract statistical features based on IMFs, power spectral density, and enhanced gammatone frequency cepstral coefficients. To evaluate the proposed approach, we conducted experiments on two public pathological speech databases including UA Speech and TORGO. The results show that our algorithm performed better than traditional features in classification. We achieved improvements of 13.8% (UA Speech) and 3.84% (TORGO), respectively. Furthermore, the incorporation of an imbalanced classification algorithm to address data imbalance has resulted in a 12.18% increase in recognition accuracy. This algorithm effectively addresses the challenges of the imbalanced dataset and non-linearity in dysarthric speech and simultaneously provides a robust representation of the local pathological features of the vocal folds and tracts.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.