Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wav2vec-based Detection and Severity Level Classification of Dysarthria from Speech (2309.14107v2)

Published 25 Sep 2023 in eess.AS, cs.CL, cs.LG, cs.SD, and eess.SP

Abstract: Automatic detection and severity level classification of dysarthria directly from acoustic speech signals can be used as a tool in medical diagnosis. In this work, the pre-trained wav2vec 2.0 model is studied as a feature extractor to build detection and severity level classification systems for dysarthric speech. The experiments were carried out with the popularly used UA-speech database. In the detection experiments, the results revealed that the best performance was obtained using the embeddings from the first layer of the wav2vec model that yielded an absolute improvement of 1.23% in accuracy compared to the best performing baseline feature (spectrogram). In the studied severity level classification task, the results revealed that the embeddings from the final layer gave an absolute improvement of 10.62% in accuracy compared to the best baseline features (mel-frequency cepstral coefficients).

Citations (20)

Summary

We haven't generated a summary for this paper yet.