Functional Inequalities for Brownian Motion on Riemannian Manifolds with Sticky-Reflecting Boundary Diffusion (2401.00206v2)
Abstract: We prove geometric upper bounds for the Poincar\'e and Logarithmic Sobolev constants for Brownian motion on manifolds with sticky reflecting boundary diffusion i.e. extended Wentzell-type boundary condition under general curvature assumptions on the manifold and its boundary. The method is based on an interpolation involving energy interactions between the boundary and the interior of the manifold. As side results we obtain explicit geometric bounds on the first nontrivial Steklov eigenvalue, for the norm of the boundary trace operator on Sobolev functions, and on the boundary trace logarithmic Sobolev constant. The case of Brownian motion with pure sticky reflection is also treated.
- A. Aurell and B. Djehiche. Behavior near walls in the mean-field approach to crowd dynamics. SIAM J. Appl. Math., 80(3):1153–1174, 2020.
- Analysis and geometry of Markov diffusion operators, volume 348 of Grundlehren Math. Wiss. Cham: Springer, 2014.
- An eigenvalue problem involving the (p,q)𝑝𝑞(p,q)( italic_p , italic_q )-Laplacian with a parametric boundary condition. Mediterr. J. Math., 20(4):18, 2023. Id/No 232.
- W. Beckner. Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. Math. (2), 138(1):213–242, 1993.
- Elliptic eigenvalue problems with eigenparameter dependent boundary conditions. J. Differential Equations, 174(1):30–54, 2001.
- Uniform bounds for the best Sobolev trace constant. Adv. Nonlinear Stud., 3(2):181–192, 2003.
- Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum. Ann. Inst. Fourier (Grenoble), 18(fasc. 2):369–521 (1969), 1968.
- N. Bou-Rabee and M. C. Holmes-Cerfon. Sticky Brownian motion and its numerical solution. SIAM Rev., 62(1):164–195, 2020.
- Bulk-boundary eigenvalues for bilaplacian problems. Discrete Contin. Dyn. Syst., 43(3-4):1175–1200, 2023.
- Sticky diffusion as a Wasserstein gradient flow. 2024. in preparation.
- D. Chafaï and F. Malrieu. On fine properties of mixtures with respect to concentration of measure and Sobolev type inequalities. Ann. Inst. Henri Poincaré Probab. Stat., 46(1):72–96, 2010.
- I. Chavel. Eigenvalues in Riemannian geometry. With a chapter by Burton Randol. With an appendix by Jozef Dodziuk, volume 115 of Pure Appl. Math., Academic Press. Academic Press, New York, NY, 1984.
- I. Chavel. Riemannian Geometry: A Modern Introduction. Cambridge University Press, 1995.
- Estimates of logarithmic Sobolev constant: an improvement of Bakry-Emery criterion. J. Funct. Anal., 144(2):287–300, 1997.
- Some recent developments on the steklov eigenvalue problem. Revista Matemática Complutense, pages 1–161, 09 2023.
- Scaling limits of equilibrium wetting models in (1+1)11(1+1)( 1 + 1 )-dimension. Probab. Theory Related Fields, 132(4):471–500, 2005.
- Hypercontractivity and spectral gap of symmetric diffusions with applications to the stochastic Ising models. J. Funct. Anal., 92(1):30–48, 1990.
- K.-J. Engel. The Laplacian on C(Ω¯)𝐶¯ΩC(\overline{\Omega})italic_C ( over¯ start_ARG roman_Ω end_ARG ) with generalized Wentzell boundary conditions. Arch. Math. (Basel), 81(5):548–558, 2003.
- H.-J. Engelbert and G. Peskir. Stochastic differential equations for sticky Brownian motion. Stochastics, 86(6):993–1021, 2014.
- J. F. Escobar. The geometry of the first non-zero Stekloff eigenvalue. J. Funct. Anal., 150(2):544–556, 1997.
- Construction and analysis of a sticky reflected distorted Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat., 52(2):735–762, 2016.
- G. François. Spectral asymptotics stemming from parabolic equations under dynamical boundary conditions. Asymptot. Anal., 46(1):43–52, 2006.
- G. R. Goldstein. Derivation and physical interpretation of general boundary conditions. Adv. Differential Equations, 11(4):457–480, 2006.
- Maximal regularity, analytic semigroups, and dynamic and general Wentzell boundary conditions with a diffusion term on the boundary. Ann. Mat. Pura Appl. (4), 199(1):127–146, 2020.
- M. Grothaus and R. Voßhall. Stochastic differential equations with sticky reflection and boundary diffusion. Electron. J. Probab., 22:Paper No. 7, 37, 2017.
- N. Ikeda. On the construction of two-dimensional diffusion processes satisfying Wentzell’s boundary conditions and its application to boundary value problems. Mem. Coll. Sci. Univ. Kyoto Ser. A. Math., 33:367–427, 1960/61.
- A. Kasue. Applications of Laplacian and Hessian comparison theorems. In Geometry of geodesics and related topics (Tokyo, 1982), volume 3 of Adv. Stud. Pure Math., pages 333–386. North-Holland, Amsterdam, 1984.
- J. Kennedy. An isoperimetric inequality for the second eigenvalue of the Laplacian with Robin boundary conditions. Proc. Amer. Math. Soc., 137(2):627–633, 2009.
- A. V. Kolesnikov and E. Milman. Brascamp-Lieb-type inequalities on weighted Riemannian manifolds with boundary. J. Geom. Anal., 27(2):1680–1702, 2017.
- Spectral gap estimates for brownian motion on domains with sticky-reflecting boundary diffusion. 2021. arxiv: 2106.00080.
- V. Konarovskyi and M. von Renesse. Reversible coalescing-fragmentating Wasserstein dynamics on the real line, 2017. arXiv:1709.02839,.
- N. Kuznetsov and A. Nazarov. Sharp constants in the Poincaré, Steklov and related inequalities (a survey). Mathematika, 61(2):328–344, 2015.
- Y. Li and M. Zhu. Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries. Comm. Pure Appl. Math., 50(5):449–487, 1997.
- F. Maggi and C. Villani. Balls have the worst best Sobolev inequalities. J. Geom. Anal., 15(1):83–121, 2005.
- F. Maggi and C. Villani. Balls have the worst best Sobolev inequalities. II: Variants and extensions. Calc. Var. Partial Differ. Equ., 31(1):47–74, 2008.
- S. Matculevich and S. Repin. Explicit constants in Poincaré-type inequalities for simplicial domains and application to a posteriori estimates. Comput. Methods Appl. Math., 16(2):277–298, 2016.
- G. Menz and A. Schlichting. Poincaré and logarithmic Sobolev inequalities by decomposition of the energy landscape. Ann. Probab., 42(5):1809–1884, 2014.
- D. Mugnolo and S. Romanelli. Dirichlet forms for general Wentzell boundary conditions, analytic semigroups, and cosine operator functions. Electron. J. Differential Equations, pages No. 118, 20, 2006.
- B. Nazaret. Best constant in Sobolev trace inequalities on the half-space. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 65(10):1977–1985, 2006.
- A. Nonnenmacher and M. Grothaus. Overdamped limit of generalized stochastic hamiltonian systems for singular interaction potentials, 2018.
- R. C. Reilly. Applications of the Hessian operator in a Riemannian manifold. Indiana Univ. Math. J., 26(3):459–472, 1977.
- O. S. Rothaus. Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities. J. Funct. Anal., 64(2):296–313, 1985.
- A. Schlichting. Poincaré and log-sobolev inequalities for mixtures. Entropy, 21(1), 2019.
- A. Shouman. Generalization of Philippin’s results for the first Robin eigenvalue and estimates for eigenvalues of the bi-drifting Laplacian. Ann. Global Anal. Geom., 55(4):805–817, 2019.
- K. Taira. Boundary value problems and Markov processes, volume 1499 of Lecture Notes in Mathematics. Springer, Cham, third edition, [2020] ©2020. Functional analysis methods for Markov processes.
- S. Takanobu and S. Watanabe. On the existence and uniqueness of diffusion processes with Wentzell’s boundary conditions. J. Math. Kyoto Univ., 28(1):71–80, 1988.
- A. D. Ventcel. On boundary conditions for multi-dimensional diffusion processes. Theor. Probability Appl., 4:164–177, 1959.
- J. von Below and G. François. Spectral asymptotics for the Laplacian under an eigenvalue dependent boundary condition. Bull. Belg. Math. Soc. Simon Stevin, 12(4):505–519, 2005.
- F.-Y. Wang. Estimates of the first Neumann eigenvalue and the log-Sobolev constant on non-convex manifolds. Math. Nachr., 280(12):1431–1439, 2007.
- F.-Y. Wang. Analysis for diffusion processes on Riemannian manifolds, volume 18 of Advanced Series on Statistical Science & Applied Probability. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014.
- S. Watanabe. On stochastic differential equations for multi-dimensional diffusion processes with boundary conditions. II. J. Math. Kyoto Univ., 11:545–551, 1971.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.