Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Poincaré and Brunn--Minkowski inequalities on the boundary of weighted Riemannian manifolds (1711.08825v1)

Published 23 Nov 2017 in math.DG and math.FA

Abstract: We study a Riemannian manifold equipped with a density which satisfies the Bakry--\'Emery Curvature-Dimension condition (combining a lower bound on its generalized Ricci curvature and an upper bound on its generalized dimension). We first obtain a Poincar\'e-type inequality on its boundary assuming that the latter is locally-convex; this generalizes a purely Euclidean inequality of Colesanti, originally derived as an infinitesimal form of the Brunn-Minkowski inequality, thereby precluding any extensions beyond the Euclidean setting. A dual version for generalized mean-convex boundaries is also obtained, yielding spectral-gap estimates for the weighted Laplacian on the boundary. Motivated by these inequalities, a new geometric evolution equation is proposed, which extends to the Riemannian setting the Minkowski addition operation of convex domains, a notion thus far confined to the purely linear setting. This geometric flow is characterized by having parallel normals (of varying velocity) to the evolving hypersurface along the trajectory, and is intimately related to a homogeneous Monge-Amp`ere equation on the exterior of the convex domain. Using the aforementioned Poincar\'e-type inequality on the boundary of the evolving hypersurface, we obtain a novel Brunn--Minkowski inequality in the weighted-Riemannian setting, amounting to a certain concavity property for the weighted-volume of the evolving enclosed domain. All of these results appear to be new even in the classical non-weighted Riemannian setting.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.