Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fractional Boundary Value Problems and elastic sticky Brownian motions, II: The bounded domain (2205.04162v6)

Published 9 May 2022 in math.PR and math.AP

Abstract: Sticky diffusion processes on bounded domains spend finite time (and finite mean time) on the lower-dimensional space given by the boundary. Once the process hits the boundary, then it starts again after a random amount of time. While on the boundary it can stay or move according to dynamics that are different from those in the interior. Such processes may be characterized by a time-derivative appearing in the boundary condition for the governing problem. We use time changes obtained by right-inverses of suitable processes in order to describe fractional sticky conditions and the associated boundary behaviours. We obtain that fractional boundary value problems (involving fractional dynamic boundary conditions) lead to sticky diffusions spending an infinite mean time (and finite time) on a lower-dimensional boundary. Such a behaviour can be associated with a trap effect in the macroscopic point of view.

Summary

We haven't generated a summary for this paper yet.