Papers
Topics
Authors
Recent
2000 character limit reached

A Multimodal Approach for Advanced Pest Detection and Classification

Published 18 Dec 2023 in cs.CV and cs.AI | (2312.10948v1)

Abstract: This paper presents a novel multi modal deep learning framework for enhanced agricultural pest detection, combining tiny-BERT's natural language processing with R-CNN and ResNet-18's image processing. Addressing limitations of traditional CNN-based visual methods, this approach integrates textual context for more accurate pest identification. The R-CNN and ResNet-18 integration tackles deep CNN issues like vanishing gradients, while tiny-BERT ensures computational efficiency. Employing ensemble learning with linear regression and random forest models, the framework demonstrates superior discriminate ability, as shown in ROC and AUC analyses. This multi modal approach, blending text and image data, significantly boosts pest detection in agriculture. The study highlights the potential of multi modal deep learning in complex real-world scenarios, suggesting future expansions in diversity of datasets, advanced data augmentation, and cross-modal attention mechanisms to enhance model performance.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.