Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-supervised transformer-based pre-training method with General Plant Infection dataset (2407.14911v1)

Published 20 Jul 2024 in cs.CV

Abstract: Pest and disease classification is a challenging issue in agriculture. The performance of deep learning models is intricately linked to training data diversity and quantity, posing issues for plant pest and disease datasets that remain underdeveloped. This study addresses these challenges by constructing a comprehensive dataset and proposing an advanced network architecture that combines Contrastive Learning and Masked Image Modeling (MIM). The dataset comprises diverse plant species and pest categories, making it one of the largest and most varied in the field. The proposed network architecture demonstrates effectiveness in addressing plant pest and disease recognition tasks, achieving notable detection accuracy. This approach offers a viable solution for rapid, efficient, and cost-effective plant pest and disease detection, thereby reducing agricultural production costs. Our code and dataset will be publicly available to advance research in plant pest and disease recognition the GitHub repository at https://github.com/WASSER2545/GPID-22

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com