Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A rigorous mathematical theory for topological phases and edge modes in spring-mass mechanical systems (2312.08518v1)

Published 13 Dec 2023 in math-ph and math.MP

Abstract: In this work, we examine the topological phases of the spring-mass lattices when the spatial inversion symmetry of the system is broken and prove the existence of edge modes when two lattices with different topological phases are glued together. In particular, for the one-dimensional lattice consisting of an infinite array of masses connected by springs, we show that the Zak phase of the lattice is quantized, only taking the value $0$ or $\pi$. We also prove the existence of an edge mode when two semi-infinite lattices with distinct Zak phases are connected. For the two-dimensional honeycomb lattice, we characterize the valley Chern numbers of the lattice when the masses on the lattice vertices are uneven. The existence of edge modes is proved for a joint honeycomb lattice formed by gluing two semi-infinite lattices with opposite valley Chern numbers together.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.