Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Edge states in trimer lattices (1810.05566v2)

Published 12 Oct 2018 in cond-mat.mes-hall and quant-ph

Abstract: Topological phases of matter have attracted much attention over the years. Motivated by analogy with photonic lattices, here we examine the edge states of a one-dimensional trimer lattice in the phases with and without inversion symmetry protection. In contrast to the Su-Schrieffer-Heeger model, we show that the edge states in the inversion-symmetry broken phase of the trimer model turn out to be chiral, i.e., instead of appearing in pairs localized at opposite edges they can appear at a $\textit{single}$ edge. Interestingly, these chiral edge states remain robust to large amounts of disorder. In addition, we use the Zak phase to characterize the emergence of degenerate edge states in the inversion-symmetric phase of the trimer model. Furthermore, we capture the essentials of the whole family of trimers through a mapping onto the commensurate off-diagonal Aubry-Andr\'e-Harper model, which allow us to establish a direct connection between chiral edge modes in the two models, including the calculation of Chern numbers. We thus suggest that the chiral edge modes of the trimer lattice have a topological origin inherited from this effective mapping. Also, we find a nontrivial connection between the topological phase transition point in the trimer lattice and the one in its associated two-dimensional parent system, in agreement with results in the context of Thouless pumping in photonic lattices.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.