Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 62 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Investigation into the Training Dynamics of Learned Optimizers (2312.07174v1)

Published 12 Dec 2023 in cs.LG, math.OC, and stat.ML

Abstract: Optimization is an integral part of modern deep learning. Recently, the concept of learned optimizers has emerged as a way to accelerate this optimization process by replacing traditional, hand-crafted algorithms with meta-learned functions. Despite the initial promising results of these methods, issues with stability and generalization still remain, limiting their practical use. Moreover, their inner workings and behavior under different conditions are not yet fully understood, making it difficult to come up with improvements. For this reason, our work examines their optimization trajectories from the perspective of network architecture symmetries and parameter update distributions. Furthermore, by contrasting the learned optimizers with their manually designed counterparts, we identify several key insights that demonstrate how each approach can benefit from the strengths of the other.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.