The AutoSPADA Platform: User-Friendly Edge Computing for Distributed Learning and Data Analytics in Connected Vehicles (2311.17621v1)
Abstract: Contemporary connected vehicles host numerous applications, such as diagnostics and navigation, and new software is continuously being developed. However, the development process typically requires offline batch processing of large data volumes. In an edge computing approach, data analysts and developers can instead process sensor data directly on computational resources inside vehicles. This enables rapid prototyping to shorten development cycles and reduce the time to create new business values or insights. This paper presents the design, implementation, and operation of the AutoSPADA edge computing platform for distributed data analytics. The platform's design follows scalability, reliability, resource efficiency, privacy, and security principles promoted through mature and industrially proven technologies. In AutoSPADA, computational tasks are general Python scripts, and we provide a library to, for example, read signals from the vehicle and publish results to the cloud. Hence, users only need Python knowledge to use the platform. Moreover, the platform is designed to be extended to support additional programming languages.
- doi:10.1109/BigData.2014.7004298.
- doi:10.1109/MC.2016.145.
- doi:10.1109/JPROC.2019.2920341.
- doi:10.1109/COMST.2017.2745201.
- doi:10.1561/116.00000063.
- doi:10.1109/COMST.2021.3075439.
- doi:10.1109/JIOT.2020.2984887.
- doi:10.1109/JPROC.2019.2918951.
- doi:10.1007/s41019-021-00152-6.
- doi:10.1016/j.array.2020.100043.
- doi:10.1109/MSPEC.2022.9915547.
- doi:10.1145/1238844.1238850.
- doi:10.1145/3239332.3242768.
- doi:10.1145/2737182.2737185.
- doi:10.1145/1953122.1953144.
- doi:10.1145/1978915.1978919.
- doi:10.1145/3448016.3457551.
- doi:10.1145/1294261.1294281.
- DB-engines ranking (2023) [cited 2023-07-19]. URL http://web.archive.org/web/20230709014024/https://db-engines.com/en/ranking
- doi:10.3390/bdcc7020097.
- doi:10.1145/3136014.3136031.
- doi:10.1109/SysEng.2017.8088251.
- doi:10.1109/JIOT.2022.3155872.
- doi:10.1109/SST.2016.7765670.
- arXiv:2201.03051.
- doi:10.1145/359545.359563.
- doi:10.3390/s23084008.
- Stream analyze resources (2021) [cited 2023-07-07]. URL https://www.streamanalyze.com/resources
- doi:10.1109/SEC.2018.00048.
- doi:10.1007/978-1-4842-8882-5_11.
- About technology readiness levels (2020) [cited 2023-09-27]. URL https://euraxess.ec.europa.eu/career-development/researchers/manual-scientific-entrepreneurship/major-steps/trl
- Precise data for greater safety: NIRA dynamics launches road surface alerts with audi to improve slippery roads warning system (2021) [cited 2023-10-03]. URL https://niradynamics.se/precise-data-for-greater-safety-nira-dynamics-launches-road-surface-alerts-with-audi-to-improve-slippery-roads-warning-system/
- doi:10.1109/MCSE.2021.3052101.
- doi:10.1038/s41586-020-2649-2.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.