Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vehicular Edge Cloud Computing: Depressurize the Intelligent Vehicles Onboard Computational Power (1901.03761v1)

Published 11 Jan 2019 in cs.DC

Abstract: Recently, with the rapid development of autonomous vehicles and connected vehicles, the demands of vehicular computing keep continuously growing. We notice a constant and limited onboard computational ability can hardly keep up with the rising requirements of the vehicular system and software application during their long-term lifetime, and also at the same time, the vehicles onboard computation causes an increasingly higher vehicular energy consumption. Therefore, we suppose to build a vehicular edge cloud computing (VECC) framework to resolve such a vehicular computing dilemma. In this framework, potential vehicular computing tasks can be executed remotely in an edge cloud within their time latency constraints. Simultaneously, an effective wireless network resources allocation scheme is one of the essential and fundamental factors for the QoS (quality of Service) on the VECC. In this paper, we adopted a stochastic fair allocation (SFA) algorithm to randomly allocate minimum required resource blocks to admitted vehicular users. The numerical results show great effectiveness of energy efficiency in VECC.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xin Li (981 papers)
  2. Yifan Dang (1 paper)
  3. Tefang Chen (1 paper)
Citations (11)

Summary

We haven't generated a summary for this paper yet.