Papers
Topics
Authors
Recent
2000 character limit reached

Machine learning meets Singular Optics: Speckle-based Structured light demultiplexing (2311.00366v1)

Published 1 Nov 2023 in physics.optics

Abstract: In this paper, the advancements in structured light beams recognition using speckle-based convolutional neural networks (CNNs) have been presented. Speckle fields, generated by the interference of multiple wavefronts diffracted and scattered through a diffuser, project a random distribution. The generated random distribution of phase and intensity correlates to the structured light beam of the corresponding speckle field. This unique distribution of phase and intensity offers an additional dimension for recognizing the encoded information in structured light. The CNNs are well-suited for harnessing this unique ability to recognize the speckle field by learning hidden patterns within data. One notable advantage of speckle-based recognition is their ability to identify structured light beams from a small portion of the speckle field, even in high-noise environments. The diffractive nature of the speckle field enables off-axis recognition, showcasing its capability in information broadcasting employing structured light beams. This is a significant departure from direct-mode detection-based models to alignment-free speckle-based detection models, which are no longer constrained by the directionality of laser beams.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.